在阅读Stack Overflow问题 Using vectors for performance improvement in Haskell 描述Haskell中的快速就地quicksort后,我为自己设定了两个目标:
实现中位数为3的相同算法,以避免对预先排序的向量产生不良影响;
制作并行版本。
结果如下(为简单起见,我们留下了一些小部件):
import qualified Data.Vector.Unboxed.Mutable as MV
import qualified Data.Vector.Generic.Mutable as GM
type Vector = MV.IOVector Int
type Sort = Vector -> IO ()
medianofthreepartition :: Vector -> Int -> IO Int
medianofthreepartition uv li = do
p1 <- MV.unsafeRead uv li
p2 <- MV.unsafeRead uv $ li `div` 2
p3 <- MV.unsafeRead uv 0
let p = median p1 p2 p3
GM.unstablePartition (< p) uv
vquicksort :: Sort
vquicksort uv = do
let li = MV.length uv - 1
j <- medianofthreepartition uv li
when (j > 1) (vquicksort (MV.unsafeSlice 0 j uv))
when (j + 1 < li) (vquicksort (MV.unsafeSlice (j+1) (li-j) uv))
vparquicksort :: Sort
vparquicksort uv = do
let li = MV.length uv - 1
j <- medianofthreepartition uv li
t1 <- tryfork (j > 1) (vparquicksort (MV.unsafeSlice 0 j uv))
t2 <- tryfork (j + 1 < li) (vparquicksort (MV.unsafeSlice (j+1) (li-j) uv))
wait t1
wait t2
tryfork :: Bool -> IO () -> IO (Maybe (MVar ()))
tryfork False _ = return Nothing
tryfork True action = do
done <- newEmptyMVar :: IO (MVar ())
_ <- forkFinally action (\_ -> putMVar done ())
return $ Just done
wait :: Maybe (MVar ()) -> IO ()
wait Nothing = return ()
wait (Just done) = swapMVar done ()
median :: Int -> Int -> Int -> Int
median a b c
| a > b =
if b > c then b
else if a > c then c
else a
| otherwise =
if a > c then a
else if b > c then c
else b
对于具有1,000,000个元素的载体,我得到以下结果:
"Number of threads: 4"
"**** Parallel ****"
"Testing sort with length: 1000000"
"Creating vector"
"Printing vector"
"Sorting random vector"
CPU time: 12.30 s
"Sorting ordered vector"
CPU time: 9.44 s
"**** Single thread ****"
"Testing sort with length: 1000000"
"Creating vector"
"Printing vector"
"Sorting random vector"
CPU time: 0.27 s
"Sorting ordered vector"
CPU time: 0.39 s
我的问题是:
答案 0 :(得分:1)
更好的想法是使用Control.Parallel.Strategies
来并行化快速排序。使用这种方法,您不会为可以并行执行的每个代码创建昂贵的线程。您也可以创建纯计算而不是IO。
然后你必须根据你拥有的核心数进行编译: http://www.haskell.org/ghc/docs/latest/html/users_guide/using-concurrent.html
举个例子,看看Jim Apple编写的这个简单的快速排序:
import Data.HashTable as H
import Data.Array.IO
import Control.Parallel.Strategies
import Control.Monad
import System
exch a i r =
do tmpi <- readArray a i
tmpr <- readArray a r
writeArray a i tmpr
writeArray a i tmpi
bool a b c = if c then a else b
quicksort arr l r =
if r <= l then return () else do
i <- loop (l-1) r =<< readArray arr r
exch arr i r
withStrategy rpar $ quicksort arr l (i-1)
quicksort arr (i+1) r
where
loop i j v = do
(i', j') <- liftM2 (,) (find (>=v) (+1) (i+1)) (find (<=v) (subtract 1) (j-1))
if (i' < j') then exch arr i' j' >> loop i' j' v
else return i'
find p f i = if i == l then return i
else bool (return i) (find p f (f i)) . p =<< readArray arr i
main =
do [testSize] <- fmap (fmap read) getArgs
arr <- testPar testSize
ans <- readArray arr (testSize `div` 2)
print ans
testPar testSize =
do x <- testArray testSize
quicksort x 0 (testSize - 1)
return x
testArray :: Int -> IO (IOArray Int Double)
testArray testSize =
do ans <- newListArray (0,testSize-1) [fromIntegral $ H.hashString $ show i | i <- [1..testSize]]
return ans