使用带有lambda的JDK8压缩流(java.util.stream.Streams.zip)

时间:2013-07-14 15:24:54

标签: lambda functional-programming java-8 lazy-evaluation java-stream

在带有lambda b93的JDK 8中,有一个类java.util.stream.Streams.zip in b93可用于压缩流(这在教程Exploring Java8 Lambdas. Part 1 by Dhananjay Nene中有说明)。这个功能:

  

创建一个惰性和顺序组合的Stream,其元素是   结合两个流的元素的结果。

然而在b98中,这已经消失了。事实上,java.util.stream in b98中甚至无法访问Streams类。

是否已移动此功能,如果是,我如何使用b98简洁地压缩流?

我想到的应用程序是in this java implementation of Shen,在那里我替换了

中的zip功能
  • static <T> boolean every(Collection<T> c1, Collection<T> c2, BiPredicate<T, T> pred)
  • static <T> T find(Collection<T> c1, Collection<T> c2, BiPredicate<T, T> pred)

具有相当冗长的代码(不使用b98中的功能)。

14 个答案:

答案 0 :(得分:70)

我也需要这个,所以我只是从b93中获取源代码并将其放在“util”类中。我不得不稍微修改它以使用当前的API。

这里的参考是工作代码(风险自负......):

public static<A, B, C> Stream<C> zip(Stream<? extends A> a,
                                     Stream<? extends B> b,
                                     BiFunction<? super A, ? super B, ? extends C> zipper) {
    Objects.requireNonNull(zipper);
    Spliterator<? extends A> aSpliterator = Objects.requireNonNull(a).spliterator();
    Spliterator<? extends B> bSpliterator = Objects.requireNonNull(b).spliterator();

    // Zipping looses DISTINCT and SORTED characteristics
    int characteristics = aSpliterator.characteristics() & bSpliterator.characteristics() &
            ~(Spliterator.DISTINCT | Spliterator.SORTED);

    long zipSize = ((characteristics & Spliterator.SIZED) != 0)
            ? Math.min(aSpliterator.getExactSizeIfKnown(), bSpliterator.getExactSizeIfKnown())
            : -1;

    Iterator<A> aIterator = Spliterators.iterator(aSpliterator);
    Iterator<B> bIterator = Spliterators.iterator(bSpliterator);
    Iterator<C> cIterator = new Iterator<C>() {
        @Override
        public boolean hasNext() {
            return aIterator.hasNext() && bIterator.hasNext();
        }

        @Override
        public C next() {
            return zipper.apply(aIterator.next(), bIterator.next());
        }
    };

    Spliterator<C> split = Spliterators.spliterator(cIterator, zipSize, characteristics);
    return (a.isParallel() || b.isParallel())
           ? StreamSupport.stream(split, true)
           : StreamSupport.stream(split, false);
}

答案 1 :(得分:40)

zip是protonpack library提供的功能之一。

Stream<String> streamA = Stream.of("A", "B", "C");
Stream<String> streamB  = Stream.of("Apple", "Banana", "Carrot", "Doughnut");

List<String> zipped = StreamUtils.zip(streamA,
                                      streamB,
                                      (a, b) -> a + " is for " + b)
                                 .collect(Collectors.toList());

assertThat(zipped,
           contains("A is for Apple", "B is for Banana", "C is for Carrot"));

答案 2 :(得分:26)

如果你的项目中有Guava,你可以使用Streams.zip方法(在Guava 21中添加):

  

返回一个流,其中每个元素是将streamA和streamB中的每个元素的相应元素传递给function的结果。结果流只会与两个输入流中较短的一个一样长;如果一个流更长,其额外元素将被忽略。得到的流不能有效地分裂。这可能会损害并行性能。

 public class Streams {
     ...

     public static <A, B, R> Stream<R> zip(Stream<A> streamA,
             Stream<B> streamB, BiFunction<? super A, ? super B, R> function) {
         ...
     }
 }

答案 3 :(得分:23)

Zipping two streams using JDK8 with lambda (gist).

public static <A, B, C> Stream<C> zip(Stream<A> streamA, Stream<B> streamB, BiFunction<A, B, C> zipper) {
    final Iterator<A> iteratorA = streamA.iterator();
    final Iterator<B> iteratorB = streamB.iterator();
    final Iterator<C> iteratorC = new Iterator<C>() {
        @Override
        public boolean hasNext() {
            return iteratorA.hasNext() && iteratorB.hasNext();
        }

        @Override
        public C next() {
            return zipper.apply(iteratorA.next(), iteratorB.next());
        }
    };
    final boolean parallel = streamA.isParallel() || streamB.isParallel();
    return iteratorToFiniteStream(iteratorC, parallel);
}

public static <T> Stream<T> iteratorToFiniteStream(Iterator<T> iterator, boolean parallel) {
    final Iterable<T> iterable = () -> iterator;
    return StreamSupport.stream(iterable.spliterator(), parallel);
}

答案 4 :(得分:14)

由于我不能设想在索引(Lists)以外的集合上使用压缩,而且我是简单的忠实粉丝,这将是我的解决方案:

<A,B,C>  Stream<C> zipped(List<A> lista, List<B> listb, BiFunction<A,B,C> zipper){
     int shortestLength = Math.min(lista.size(),listb.size());
     return IntStream.range(0,shortestLength).mapToObj( i -> {
          return zipper.apply(lista.get(i), listb.get(i));
     });        
}

答案 5 :(得分:10)

您提到的类的方法已移至Stream接口本身,而不是默认方法。但似乎zip方法已被删除。也许是因为不清楚不同大小的流的默认行为应该是什么。但实现所需的行为是直截了当的:

static <T> boolean every(
  Collection<T> c1, Collection<T> c2, BiPredicate<T, T> pred) {
    Iterator<T> it=c2.iterator();
    return c1.stream().allMatch(x->!it.hasNext()||pred.test(x, it.next()));
}
static <T> T find(Collection<T> c1, Collection<T> c2, BiPredicate<T, T> pred) {
    Iterator<T> it=c2.iterator();
    return c1.stream().filter(x->it.hasNext()&&pred.test(x, it.next()))
      .findFirst().orElse(null);
}

答案 6 :(得分:6)

Lazy-Seq库提供了zip功能。

https://github.com/nurkiewicz/LazySeq

这个库受scala.collection.immutable.Stream的启发,旨在提供不可变,线程安全且易于使用的延迟序列实现,可能是无限的。

答案 7 :(得分:5)

我谦卑地建议这个实施。生成的流被截断为两个输入流中较短的一个。

public static <L, R, T> Stream<T> zip(Stream<L> leftStream, Stream<R> rightStream, BiFunction<L, R, T> combiner) {
    Spliterator<L> lefts = leftStream.spliterator();
    Spliterator<R> rights = rightStream.spliterator();
    return StreamSupport.stream(new AbstractSpliterator<T>(Long.min(lefts.estimateSize(), rights.estimateSize()), lefts.characteristics() & rights.characteristics()) {
        @Override
        public boolean tryAdvance(Consumer<? super T> action) {
            return lefts.tryAdvance(left->rights.tryAdvance(right->action.accept(combiner.apply(left, right))));
        }
    }, leftStream.isParallel() || rightStream.isParallel());
}

答案 8 :(得分:1)

public class Tuple<S,T> {
    private final S object1;
    private final T object2;

    public Tuple(S object1, T object2) {
        this.object1 = object1;
        this.object2 = object2;
    }

    public S getObject1() {
        return object1;
    }

    public T getObject2() {
        return object2;
    }
}


public class StreamUtils {

    private StreamUtils() {
    }

    public static <T> Stream<Tuple<Integer,T>> zipWithIndex(Stream<T> stream) {
        Stream<Integer> integerStream = IntStream.range(0, Integer.MAX_VALUE).boxed();
        Iterator<Integer> integerIterator = integerStream.iterator();
        return stream.map(x -> new Tuple<>(integerIterator.next(), x));
    }
}

答案 9 :(得分:1)

我提供的AOL&#39; cyclops-react也提供了压缩功能,通过extended Stream implementation,也实现了反应流接口ReactiveSeq,并通过StreamUtils提供了大量的通过静态方法向标准Java Streams提供相同的功能。

 List<Tuple2<Integer,Integer>> list =  ReactiveSeq.of(1,2,3,4,5,6)
                                                  .zip(Stream.of(100,200,300,400));


  List<Tuple2<Integer,Integer>> list = StreamUtils.zip(Stream.of(1,2,3,4,5,6),
                                                  Stream.of(100,200,300,400));

它还提供更广泛的基于Applicative的压缩。例如。

   ReactiveSeq.of("a","b","c")
              .ap3(this::concat)
              .ap(of("1","2","3"))
              .ap(of(".","?","!"))
              .toList();

   //List("a1.","b2?","c3!");

   private String concat(String a, String b, String c){
    return a+b+c;
   }

甚至能够将一个流中的每个项目与另一个项目中的每个项目配对

   ReactiveSeq.of("a","b","c")
              .forEach2(str->Stream.of(str+"!","2"), a->b->a+"_"+b);

   //ReactiveSeq("a_a!","a_2","b_b!","b_2","c_c!","c2")

答案 10 :(得分:1)

使用最新的Guava库(针对Streams类),您应该能够做到

final Map<String, String> result = 
    Streams.zip(
        collection1.stream(), 
        collection2.stream(), 
        AbstractMap.SimpleEntry::new)
    .collect(Collectors.toMap(e -> e.getKey(), e  -> e.getValue()));

答案 11 :(得分:1)

这对您有用吗?这是一个简短的函数,它懒惰地评估正在压缩的流,因此您可以为它提供无限的流(它不需要占用被压缩的流的大小)。

如果流是有限的,则流之一会在元素用完时停止。

import java.util.Objects;
import java.util.function.BiFunction;
import java.util.stream.Stream;

class StreamUtils {
    static <ARG1, ARG2, RESULT> Stream<RESULT> zip(
            Stream<ARG1> s1,
            Stream<ARG2> s2,
            BiFunction<ARG1, ARG2, RESULT> combiner) {
        final var i2 = s2.iterator();
        return s1.map(x1 -> i2.hasNext() ? combiner.apply(x1, i2.next()) : null)
                .takeWhile(Objects::nonNull);
    }
}

这里有一些单元测试代码(比代码本身长得多!)

import org.junit.jupiter.api.Test;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;

import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.BiFunction;
import java.util.stream.Collectors;
import java.util.stream.Stream;

import static org.junit.jupiter.api.Assertions.assertEquals;

class StreamUtilsTest {
    @ParameterizedTest
    @MethodSource("shouldZipTestCases")
    <ARG1, ARG2, RESULT>
    void shouldZip(
            String testName,
            Stream<ARG1> s1,
            Stream<ARG2> s2,
            BiFunction<ARG1, ARG2, RESULT> combiner,
            Stream<RESULT> expected) {
        var actual = StreamUtils.zip(s1, s2, combiner);

        assertEquals(
                expected.collect(Collectors.toList()),
                actual.collect(Collectors.toList()),
                testName);
    }

    private static Stream<Arguments> shouldZipTestCases() {
        return Stream.of(
                Arguments.of(
                        "Two empty streams",
                        Stream.empty(),
                        Stream.empty(),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.empty()),
                Arguments.of(
                        "One singleton and one empty stream",
                        Stream.of(1),
                        Stream.empty(),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.empty()),
                Arguments.of(
                        "One empty and one singleton stream",
                        Stream.empty(),
                        Stream.of(1),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.empty()),
                Arguments.of(
                        "Two singleton streams",
                        Stream.of("blah"),
                        Stream.of(1),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.of(pair("blah", 1))),
                Arguments.of(
                        "One singleton, one multiple stream",
                        Stream.of("blob"),
                        Stream.of(2, 3),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.of(pair("blob", 2))),
                Arguments.of(
                        "One multiple, one singleton stream",
                        Stream.of("foo", "bar"),
                        Stream.of(4),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.of(pair("foo", 4))),
                Arguments.of(
                        "Two multiple streams",
                        Stream.of("nine", "eleven"),
                        Stream.of(10, 12),
                        (BiFunction<Object, Object, Object>) StreamUtilsTest::combine,
                        Stream.of(pair("nine", 10), pair("eleven", 12)))
        );
    }

    private static List<Object> pair(Object o1, Object o2) {
        return List.of(o1, o2);
    }

    static private <T1, T2> List<Object> combine(T1 o1, T2 o2) {
        return List.of(o1, o2);
    }

    @Test
    void shouldLazilyEvaluateInZip() {
        final var a = new AtomicInteger();
        final var b = new AtomicInteger();
        final var zipped = StreamUtils.zip(
                Stream.generate(a::incrementAndGet),
                Stream.generate(b::decrementAndGet),
                (xa, xb) -> xb + 3 * xa);

        assertEquals(0, a.get(), "Should not have evaluated a at start");
        assertEquals(0, b.get(), "Should not have evaluated b at start");

        final var takeTwo = zipped.limit(2);

        assertEquals(0, a.get(), "Should not have evaluated a at take");
        assertEquals(0, b.get(), "Should not have evaluated b at take");

        final var list = takeTwo.collect(Collectors.toList());

        assertEquals(2, a.get(), "Should have evaluated a after collect");
        assertEquals(-2, b.get(), "Should have evaluated b after collect");
        assertEquals(List.of(2, 4), list);
    }
}

答案 12 :(得分:0)

这很棒。我不得不将两个流压缩成一个Map,其中一个流是关键,另一个是值

Stream<String> streamA = Stream.of("A", "B", "C");
Stream<String> streamB  = Stream.of("Apple", "Banana", "Carrot", "Doughnut");    
final Stream<Map.Entry<String, String>> s = StreamUtils.zip(streamA,
                    streamB,
                    (a, b) -> {
                        final Map.Entry<String, String> entry = new AbstractMap.SimpleEntry<String, String>(a, b);
                        return entry;
                    });

System.out.println(s.collect(Collectors.toMap(e -> e.getKey(), e -> e.getValue())));

输出: {A = Apple,B =香蕉,C =胡萝卜}

答案 13 :(得分:0)

如果有人需要此功能,则streamex库中有StreamEx.zipWith个函数:

StreamEx<String> givenNames = StreamEx.of("Leo", "Fyodor")
StreamEx<String> familyNames = StreamEx.of("Tolstoy", "Dostoevsky")
StreamEx<String> fullNames = givenNames.zipWith(familyNames, (gn, fn) -> gn + " " + fn);

fullNames.forEach(System.out::println);  // prints: "Leo Tolstoy\nFyodor Dostoevsky\n"