Pandas:SQL-HAVING语句的高效等价物

时间:2013-07-08 09:54:13

标签: python performance pandas

我对pandas中的行选择有疑问。我们来看下面的例子:

df = pd.DataFrame({
'Branch' : 'A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Joe Mark Carl'.split(),
'Quantity': [1,3,5,8,9,3],
'Date' : [
    DT.datetime(2013,9,1,13,0),
    DT.datetime(2013,9,1,13,5),
    DT.datetime(2013,10,1,20,0),
    DT.datetime(2013,10,3,10,0),
    DT.datetime(2013,12,2,12,0),                                      
    DT.datetime(2013,12,2,14,0),
    ]})

我想有效地找到那些“卡尔”“马克”买了东西的日子,包括相应的购买日期。例如像这样

                     Date_1 Buyer_1                Date Buyer
Day                                                                
2013-09-01 2013-09-01 13:00:00       Carl 2013-09-01 13:05:00  Mark
2013-12-02 2013-12-02 14:00:00       Carl 2013-12-02 12:00:00  Mark

为此,我目前正在使用以下代码:

df['Day'] = df.Date.map(lambda t: t.date())
df = df.set_index('Day')
day1 = df[df.Buyer == 'Carl'][['Date', 'Buyer']]
day2 = df[df.Buyer == 'Mark'][['Date', 'Buyer']]
test1 = day1.join(day2, lsuffix='_1')
test1 = test1.dropna()

但是,此代码无法正常执行(timeit.timeit(mytest,number = 1000))~4s

有没有人知道如何提高此计算的性能并保持可读性?

我将不胜感激。

安迪

2 个答案:

答案 0 :(得分:1)

试试这个:

In [69]: df[df['Buyer'].isin(['Carl', 'Mark'])].set_index('Buyer', append=True)[['Date']].unstack(['Buyer'])
Out[69]: 
                          Date                    
Buyer                     Carl                Mark
Day                                               
2013-09-01 2013-09-01 13:00:00 2013-09-01 13:05:00
2013-10-01 2013-10-01 20:00:00                 NaT
2013-12-02 2013-12-02 14:00:00 2013-12-02 12:00:00

答案 1 :(得分:1)

如果你没有把索引设置为Day,那么你可以使用filter(很快就会出现0.12):

In [11]: df
Out[11]:
          Day Branch Buyer                Date  Quantity
0  2013-09-01      A  Carl 2013-09-01 13:00:00         1
1  2013-09-01      A  Mark 2013-09-01 13:05:00         3
2  2013-10-01      A  Carl 2013-10-01 20:00:00         5
3  2013-10-03      A   Joe 2013-10-03 10:00:00         8
4  2013-12-02      A  Mark 2013-12-02 12:00:00         9
5  2013-12-02      B  Carl 2013-12-02 14:00:00         3

In [12]: g = df.groupby('Day', as_index=False)

In [13]: df1 = g.filter(lambda row: set(['Carl', 'Mark']).issubset(set(row.Buyer)))

In [14]: df1
Out[14]:
          Day Branch Buyer                Date  Quantity
0  2013-09-01      A  Carl 2013-09-01 13:00:00         1
1  2013-09-01      A  Mark 2013-09-01 13:05:00         3
4  2013-12-02      A  Mark 2013-12-02 12:00:00         9
5  2013-12-02      B  Carl 2013-12-02 14:00:00         3

然后可以使用pivot_table

In [15]: df1.pivot_table('Quantity', 'Day', 'Buyer')
Out[15]:
Buyer       Carl  Mark
Day
2013-09-01     1     3
2013-12-02     3     9

In [16]: df1.pivot_table(['Date', 'Quantity'], 'Day', 'Buyer',
                         aggfunc=lambda t: t.values[0])
Out[16]:
                           Date                      Quantity
Buyer                      Carl                 Mark     Carl Mark
Day
2013-09-01  2013-09-01 13:00:00  2013-09-01 13:05:00        1    3
2013-12-02  2013-12-02 14:00:00  2013-12-02 12:00:00        3    9

考虑一下,或许首先做出支点更有意义:

In [21]: pv1 = df.pivot_table('Quantity', 'Day', 'Buyer')

In [22]: pv1[pd.notnull(pv1['Mark']) & pd.notnull(pv1['Carl'])]
Out[22]:
Buyer       Carl  Joe  Mark
Day
2013-09-01     1  NaN     3
2013-12-02     3  NaN     9

In [22]: pv2 = df.pivot_table(['Date', 'Quantity'], 'Day', 'Buyer',
                              aggfunc=lambda t: t.values[0])

In [23]: pv2[pd.notnull(pv2[('Quantity', 'Mark')]) & pd.notnull(pv2[('Quantity', 'Carl')])]
Out[23]:
                                          Date                                          Quantity
Buyer                                     Carl  Joe                                Mark     Carl  Joe Mark
Day
2013-09-01  2013-09-01T14:00:00.000000000+0100  NaN  2013-09-01T14:05:00.000000000+0100        1  NaN    3
2013-12-02  2013-12-02T14:00:00.000000000+0000  NaN  2013-12-02T12:00:00.000000000+0000        3  NaN    9