我有一个大的嵌套列表,嵌套列表中的每个列表都包含一个格式为浮点数的列表。但是,除少数例外情况外,嵌套列表中的每个列表都是相同的。我想提取嵌套列表中所有列表共有的数字。我的问题的一个简单示例如下所示:
nested_list = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]
在以下情况中,我想提取以下内容:
common_vals = [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0]
我尝试使用set intersectionctions来解决这个问题,但是因为我无法在嵌套列表的所有元素上使用它。
答案 0 :(得分:6)
您可以使用reduce
和set.intersection
:
>>> reduce(set.intersection, map(set, nested_list))
set([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
使用itertools.imap
进行内存有效解决方案。
>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]
>>> %timeit set.intersection(*map(set, lis))
100000 loops, best of 3: 12.5 us per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
10000 loops, best of 3: 14.4 us per loop
>>> %timeit reduce(set.intersection, map(set, lis))
10000 loops, best of 3: 12.8 us per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
100000 loops, best of 3: 13.1 us per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
100000 loops, best of 3: 10.6 us per loop
>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]*1000
>>> %timeit set.intersection(*map(set, lis))
10 loops, best of 3: 16.4 ms per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
10 loops, best of 3: 15.8 ms per loop
>>> %timeit reduce(set.intersection, map(set, lis))
100 loops, best of 3: 16.3 ms per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
10 loops, best of 3: 13.8 ms per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
100 loops, best of 3: 8.4 ms per loop
>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0], [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]*10**5
>>> %timeit set.intersection(*map(set, lis))
1 loops, best of 3: 1.92 s per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
1 loops, best of 3: 2.17 s per loop
>>> %timeit reduce(set.intersection, map(set, lis))
1 loops, best of 3: 2.14 s per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
1 loops, best of 3: 1.52 s per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
1 loops, best of 3: 913 ms per loop
<强>结论:强>
Steven Rumbalski的solution显然是效率方面最好的。
答案 1 :(得分:6)
Ashwini Chaudhary的解决方案很优雅,但对于大型输入来说可能效率很低,因为它创建了许多中间集。如果您的nested_list
很大,请执行以下操作:
>>> set.intersection(set(nested_list[0]), *itertools.islice(nested_list, 1, None))
set([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
答案 2 :(得分:5)
试试这个,这是最简单的解决方案:
set.intersection(*map(set, nested_list))
或者如果您更喜欢使用生成器表达式,这在内存使用方面应该是更有效的解决方案:
set.intersection(*(set(e) for e in nested_list))
答案 3 :(得分:0)
计算nested_list中出现的列表中每个元素的出现次数,如果出现等于nested_list中的lements数量,则对所有列表都是通用的。 如果nested_list的元素没有重复数字
,则不需要设置转换nested_list = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]
from collections import Counter
result = [val for val,cnt in Counter([x for t in nested_list for x in set(t)]).items() if cnt == len(nested_list)]
print result
# [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]