我有一个复杂的,多部分的问题。如果我不清楚,我道歉。我也是一个相当新手的R用户,所以请原谅我,如果这看起来很简陋。 我想计算鲸鱼潜水数据和猎物分布数据的主机托管指数。这需要:
我希望能够编写一个功能(或一系列功能),以便我不必通过潜水分离我的数据,并手动重新运行每次潜水的功能。
鲸鱼数据示例,如果潜水号码(有时40次潜水),潜水等于深度,分类与潜水类型有关。 [IMG] http://i41.tinypic.com/33vc5rs.jpg[/IMG]
深度分箱来自包含猎物信息的单独数据集:
我有以下代码作为整体用于潜水数据,但是需要编写一个循环或包含一个应用功能,这样我就可以为每个潜水中的数据运行这个,该潜水包含在一个文件中。因此,对于有40次潜水的鲸鱼,我需要40个鲸鱼频率,40头鲸鱼CG,40头鲸鱼等等。每次潜水时,猎物分布都是相同的!最后,我想要一个包含delta GIC值列表的表。
#bin whale dive depths
dive.cut=cut(whale,c(0 ,depths), right=FALSE)
dive.freq=table(dive.cut)
# compute CG
fish.CG=sum(depths*fish)/sum(fish)
whale.CG=sum(depths*whale.freq)/sum(whale.freq)
zoop.CG=sum(depths*zoop)/sum(zoop)
# compute Inertia
fish.I=sum((depths-fish.CG)^2*fish)/sum(fish)
whale.I=sum((depths-whale.CG)^2*whale.freq)/sum(whale.freq)
zoop.I=sum((depths-zoop.CG)^2*zoop)/sum(zoop)
#compute GIC as per
# compute delta CG
deltaCG.fish_whale=fish.CG-whale.CG
GIC.fish_whale= 1-((deltaCG.fish_whale)^2/((deltaCG.fish_whale)^2+fish.I+whale.I))
deltaCG.zoop_whale=zoop.CG-whale.CG
GIC.zoop_whale= 1-((deltaCG.zoop_whale)^2/((deltaCG.zoop_whale)^2+zoop.I+whale.I))
更新 我已经粘贴了猎物和鲸鱼潜水的示例数据。
猎物数据
depths fish zoop
1 5 0.00000 0.000000
2 10 0.00000 0.000000
3 15 0.00000 0.000000
4 20 21.24194 0.000000
5 25 149.51694 14.937945
6 30 170.43214 0.000000
7 35 296.93453 0.737109
8 40 16.61643 4.295556
9 45 92.68130 26.384844
10 50 50.68548 55.902301
11 55 37.47343 218.673781
12 60 32.74443 204.452678
13 65 20.62983 113.112452
14 70 13.75121 83.014457
15 75 16.15562 55.051358
16 80 22.65562 96.746271
17 85 42.99768 302.229135
18 90 16315.65099 783.868978
19 95 43006.20482 1713.133161
20 100 23476.24740 3440.034642
21 105 30513.66346 6667.914707
22 110 17411.64500 9398.790964
23 115 12127.70195 7580.233165
24 120 4526.63393 7205.768739
25 125 3328.89644 6567.175766
26 130 1864.21486 4567.446886
27 135 2202.07464 4295.772442
28 140 2719.29417 4419.903403
29 145 1710.75599 5102.689940
30 150 2033.69552 4496.121974
31 155 2796.81788 3269.193606
32 160 967.09406 2310.203528
33 165 437.30896 447.940140
34 170 193.15526 63.731336
35 175 143.88043 38.004799
36 180 406.31373 22.565211
37 185 786.30087 31.889927
38 190 1643.52542 36.580063
39 195 1665.69794 14.084152
40 200 1281.15790 0.000000
41 205 753.75309 35.343794
42 210 252.48867 0.000000
鲸鱼数据:
Number Dive Class
1 1 95.1 F
2 1 95.9 F
3 1 95.1 F
4 1 95.9 F
5 1 96.8 F
6 1 97.2 F
7 1 96.8 F
8 2 95.5 N
9 2 94.2 N
10 3 94.7 F
11 3 94.2 F
12 3 94.2 F
13 3 95.9 F
14 3 95.9 F
15 4 93.8 F
16 4 97.7 F
17 4 99.4 F
18 4 94.7 F
19 4 92.5 F
20 4 98.1 F
21 5 97.2 N
22 5 98.5 N
23 5 95.5 N
24 5 97.2 N
25 5 98.5 N
26 5 96.4 N
27 5 94.7 N
28 5 95.5 N
答案 0 :(得分:1)
尝试使用此代码。我测试了你发布的数据。我使用了猎物数据框的深度。不确定这是不是你想做的。而且,这次我猜你用了鲸鱼$ Dive来潜水.freq。如果没有,你将不得不改变它。 (注意,这个问题也被交叉发布到了r-help列表中。)
prey <- structure(list(depths = c(5L, 10L, 15L, 20L, 25L, 30L, 35L, 40L,
45L, 50L, 55L, 60L, 65L, 70L, 75L, 80L, 85L, 90L, 95L, 100L,
105L, 110L, 115L, 120L, 125L, 130L, 135L, 140L, 145L, 150L, 155L,
160L, 165L, 170L, 175L, 180L, 185L, 190L, 195L, 200L, 205L, 210L
), fish = c(0, 0, 0, 21.24194, 149.51694, 170.43214, 296.93453,
16.61643, 92.6813, 50.68548, 37.47343, 32.74443, 20.62983, 13.75121,
16.15562, 22.65562, 42.99768, 16315.65099, 43006.20482, 23476.2474,
30513.66346, 17411.645, 12127.70195, 4526.63393, 3328.89644,
1864.21486, 2202.07464, 2719.29417, 1710.75599, 2033.69552, 2796.81788,
967.09406, 437.30896, 193.15526, 143.88043, 406.31373, 786.30087,
1643.52542, 1665.69794, 1281.1579, 753.75309, 252.48867), zoop = c(0,
0, 0, 0, 14.937945, 0, 0.737109, 4.295556, 26.384844, 55.902301,
218.673781, 204.452678, 113.112452, 83.014457, 55.051358, 96.746271,
302.229135, 783.868978, 1713.133161, 3440.034642, 6667.914707,
9398.790964, 7580.233165, 7205.768739, 6567.175766, 4567.446886,
4295.772442, 4419.903403, 5102.68994, 4496.121974, 3269.193606,
2310.203528, 447.94014, 63.731336, 38.004799, 22.565211, 31.889927,
36.580063, 14.084152, 0, 35.343794, 0)), .Names = c("depths",
"fish", "zoop"), class = "data.frame", row.names = c("1", "2",
"3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14",
"15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36",
"37", "38", "39", "40", "41", "42"))
whale <- structure(list(Number = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L), Dive = c(95.1, 95.9, 95.1, 95.9, 96.8, 97.2, 96.8,
95.5, 94.2, 94.7, 94.2, 94.2, 95.9, 95.9, 93.8, 97.7, 99.4, 94.7,
92.5, 98.1, 97.2, 98.5, 95.5, 97.2, 98.5, 96.4, 94.7, 95.5),
Class = c("F", "F", "F", "F", "F", "F", "F", "N", "N", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "N", "N",
"N", "N", "N", "N", "N", "N")), .Names = c("Number", "Dive",
"Class"), class = "data.frame", row.names = c("1", "2", "3",
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28"))
# split the data frame into a list with a different element for each dive
dives <- split(whale, whale$Dive)
# define a single function that does all of your computations
compute <- function(whale, depths, fish, zoop) {
# you don't say what part of the whale data you are counting ... I'll assume it's the dive
dive.freq <- table(cut(whale$Dive, c(0, depths)))
#compute Center of Gravity
fish.CG <- sum(depths*fish)/sum(fish) #calculate CG for fish distribution ONCE for each whale
zoop.CG <- sum(depths*zoop)/sum(zoop) #calculate CG for zoop distribution ONCE for each whale
whale.CG <- sum(depths*dive.freq/sum(dive.freq)) #calculate for EACH dive
#compute Inertia
fish.I <- sum((depths-fish.CG)^2*fish)/sum(fish)
zoop.I <- sum((depths-zoop.CG)^2*zoop)/sum(zoop)
whale.I <- sum((depths-whale.CG)^2*dive.freq)/sum(dive.freq) #needs to be calculated for EACH dive
# compute delta CG
deltaCG.fish_whale <- fish.CG-whale.CG
GIC.fish_whale <- 1-((deltaCG.fish_whale)^2/((deltaCG.fish_whale)^2+fish.I+whale.I))
deltaCG.zoop_whale <- zoop.CG-whale.CG
GIC.zoop_whale <- 1-((deltaCG.zoop_whale)^2/((deltaCG.zoop_whale)^2+zoop.I+whale.I))
# then list off all the variables you want to keep as output from the function here
c(fish.CG=fish.CG, whale.CG=whale.CG, zoop.CG=zoop.CG, fish.I=fish.I, whale.I=whale.I, zoop.I=zoop.I,
GIC.fish_whale=GIC.fish_whale, GIC.zoop_whale=GIC.zoop_whale)
}
# apply the compute function to each element of the dives list
t(sapply(dives, function(dat) compute(whale=dat, depths=prey$depths, fish=prey$fish, zoop=prey$zoop)))