我刚开始使用Weka并且遇到了第一步的麻烦。
我们有训练集:
@relation PerceptronXOR @attribute X1 numeric @attribute X2 numeric @attribute Output numeric @data 1,1,-1 -1,1,1 1,-1,1 -1,-1,-1
我想做的第一步就是训练,然后使用Weka gui对一组进行分类。 到目前为止我一直在做的事情:
使用Weka 3.7.0。
输出:
=== Run information === Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 2 -R Relation: PerceptronXOR Instances: 4 Attributes: 3 X1 X2 Output Test mode: evaluate on training data === Classifier model (full training set) === Linear Node 0 Inputs Weights Threshold 0.21069691964232443 Node 1 1.8781169869419072 Node 2 -1.8403146612166397 Sigmoid Node 1 Inputs Weights Threshold -3.7331156814378685 Attrib X1 3.6380519730323164 Attrib X2 -1.0420815868133226 Sigmoid Node 2 Inputs Weights Threshold -3.64785119182632 Attrib X1 3.603244645539393 Attrib X2 0.9535137571446323 Class Input Node 0 Time taken to build model: 0 seconds === Evaluation on training set === === Summary === Correlation coefficient 0.7047 Mean absolute error 0.6073 Root mean squared error 0.7468 Relative absolute error 60.7288 % Root relative squared error 74.6842 % Total Number of Instances 4
奇怪的是,在0.3的500次迭代没有得到错误,但5000 @ 0.1确实如此,所以让我们继续。
现在使用测试数据集:
@relation PerceptronXOR @attribute X1 numeric @attribute X2 numeric @attribute Output numeric @data 1,1,-1 -1,1,1 1,-1,1 -1,-1,-1 0.5,0.5,-1 -0.5,0.5,1 0.5,-0.5,1 -0.5,-0.5,-1
=== Run information === Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.2 -N 5000 -V 0 -S 0 -E 20 -H 2 -R Relation: PerceptronXOR Instances: 4 Attributes: 3 X1 X2 Output Test mode: user supplied test set: size unknown (reading incrementally) === Classifier model (full training set) === Linear Node 0 Inputs Weights Threshold -1.2208619057226187 Node 1 3.1172079341507497 Node 2 -3.212484459911485 Sigmoid Node 1 Inputs Weights Threshold 1.091378074639599 Attrib X1 1.8621040828953983 Attrib X2 1.800744048145267 Sigmoid Node 2 Inputs Weights Threshold -3.372580743113282 Attrib X1 2.9207154176666386 Attrib X2 2.576791630598144 Class Input Node 0 Time taken to build model: 0.04 seconds === Evaluation on test set === === Summary === Correlation coefficient 0.8296 Mean absolute error 0.3006 Root mean squared error 0.6344 Relative absolute error 30.0592 % Root relative squared error 63.4377 % Total Number of Instances 8
为什么无法正确分类?
仅仅因为它在训练数据上很快就达到了局部最低值,并且不知道那不适合所有情况吗?
问题。
答案 0 :(得分:4)
使用0.5的学习率可以完成两个示例的500次迭代。 学习率是新例子的重量。 显然问题很难,并且很容易通过2个隐藏层进入局部最小值。如果您使用具有较高迭代次数的低学习率,则学习过程将更加保守,并且更有可能达到最佳。