多尺度检测循环如何在OpenCV的HOG检测中起作用?

时间:2013-06-12 15:15:54

标签: c++ opencv image-processing object-detection

在关于HOG的Dalal和Triggs论文中,似乎通过扫描图像金字塔进行多尺度检测。但我找不到哪个模块/ objdetect / src / hog.cpp执行金字塔扫描/循环。我的理解是错误的,还是我读错了源文件?

1 个答案:

答案 0 :(得分:0)

如果查看此功能的源代码

void HOGCache::init(const HOGDescriptor* _descriptor,
        const Mat& _img, Size _paddingTL, Size _paddingBR,
        bool _useCache, Size _cacheStride)

您将看到以下评论

// Initialize 2 lookup tables, pixData & blockData.
// Here is why:
//
// The detection algorithm runs in 4 nested loops (at each pyramid layer):
//  loop over the windows within the input image
//    loop over the blocks within each window
//      loop over the cells within each block
//        loop over the pixels in each cell
//
// As each of the loops runs over a 2-dimensional array,
// we could get 8(!) nested loops in total, which is very-very slow.
//
// To speed the things up, we do the following:
//   1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods;
//         inside we compute the current search window using getWindow() method.
//         Yes, it involves some overhead (function call + couple of divisions),
//         but it's tiny in fact.
//   2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j]
//         to set up gradient and histogram pointers.
//   3. loops over cells and pixels in each cell are merged
//       (since there is no overlap between cells, each pixel in the block is processed once)
//      and also unrolled. Inside we use PixData[k] to access the gradient values and
//      update the histogram
//

正如评论所解释的那样,循环被展开以用于优化目的,这也许是为什么通过快速扫描源代码很难找到它们。