我正在使用嵌入在具有Linux内核2.6.33的Virtex4 FPGA中的PowerPC 405进行开发。
到目前为止,我一直在以内核可加载模块的形式编写FPGA中实现的平台设备的驱动程序。使用平面Open Firmware Device Tree文件注册设备。要创建设备文件,我使用OF函数获取设备节点,然后注册一个新的miscdevice
,然后自动注册一个次设备号并为我创建设备文件。这也会创建一个device
嵌入miscdevice
(即miscdevice.this_device
)
问题是我现在需要执行DMA操作。我尝试使用dma_alloc_coherent()
调用miscdevice.this_device
函数,但此设备未与任何总线关联,并且始终返回错误。我做了一些挖掘,结果发现struct of_device
也嵌入了struct device
(即of_device.dev
)。当我尝试使用dma_alloc_coherent()
时,它工作正常。
所以现在我有两个不同的struct device
结构,一个用于管理我的角色设备文件,另一个用于管理底层的Open Firmware系统调用,总线和DMA事务。当然,这些设备在sysfs中并不相互关联。
我的问题是,是否有可能以某种方式请求为我从OF层获得的device
结构创建设备文件而不是使用Misc设备API创建新设备?这样一切都将与单个device
结构相关联。
答案 0 :(得分:3)
我认为您对dma_alloc_coherent()的修正是正确的。
但我不认为使用嵌入在结构of_device中的设备结构来替换您创建的miscdevice是不对的。 of_device是Open Firmware数据库中对象的描述。并且根据Linux设备驱动程序模型,设备结构嵌入在Linux内核中的各种设备对象中。而且我认为你将miscdevice注册为一个字符设备,应该有file_operations结构相关联。
总之,他们是不同的观点,他们不能互相替换。
答案 1 :(得分:0)
我使用 miscdevice.this_device 为 raspberry pi 编写了一些实验性的 dma 驱动程序
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/miscdevice.h>
#include "gpio.h"
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include "DMA.h"
#include <linux/of_irq.h>
static int my_open(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: open() %d\n", current->pid);
return 0;
}
static int my_close(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: close()\n");
return 0;
}
static ssize_t my_read(struct file *f, char __user *buf, size_t len, loff_t *off)
{
printk(KERN_INFO "Driver: read()\n");
return 0;
}
char databuf[100];
static ssize_t my_write(struct file *f, const char __user *buf, size_t len, loff_t *off)
{
if(copy_from_user(databuf, buf, 100) != 0) return 0;
printk("Data from the user: %s\n", databuf);
return len;
}
static struct file_operations sample_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
.read = my_read,
.write = my_write
};
struct miscdevice sample_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "ledButton",
.fops = &sample_fops,
.mode = 0666,
};
//static struct dmadata_s *cpu_addr;
//dma_addr_t dma_addr;
struct dma_cb *virt_cb;
dma_addr_t phys_cb;
uint32_t *virt_src;
dma_addr_t phys_src;
uint32_t *virt_dst;
dma_addr_t phys_dst;
static irqreturn_t dma_irq_fn(int irq, void *dev_id)
{
printk("destAddr %u\n", *virt_dst);
dma_regs->CS.INT = 1;
return IRQ_HANDLED;
}
static struct device *dev;
int IRQ_DMA0;
static int __init ofcd_init(void) /* Constructor */
{
int error, mret;
struct device_node * np = NULL;
error = misc_register(&sample_device);
if (error) {
pr_err("can't misc_register :(\n");
return error;
}
dev = sample_device.this_device;
dev->coherent_dma_mask = ~0;
dev->dma_mask = &dev->coherent_dma_mask;
// dev_set_name(dev, "mydmadev");
// cpu_addr = (struct dmadata_s*)kmalloc(sizeof(struct dmadata_s), GFP_KERNEL | GFP_DMA);
//dma_addr = dma_map_single(dev, cpu_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
virt_cb = dma_alloc_coherent(dev, 32, &phys_cb, GFP_KERNEL | GFP_DMA);
if(virt_cb == 0 || phys_cb == 0){
printk("DMA cb error\n");
}
virt_src = dma_alloc_coherent(dev, 4, &phys_src, GFP_KERNEL | GFP_DMA);
if(virt_src == 0 || phys_src == 0){
printk("DMA src error\n");
}
virt_dst = dma_alloc_coherent(dev, 4, &phys_dst, GFP_KERNEL | GFP_DMA);
if(virt_dst == 0 || phys_dst == 0){
printk("DMA dst error\n");
}
memset(virt_cb, 0, sizeof(*virt_cb));
dma_regs = (struct dma_ch *)ioremap(DMA_BASE, sizeof(struct dma_ch));
// strcpy(cpu_addr->srcAddr, "DMA0");
*virt_src = 200;
virt_cb->TI.SRC_INC = 1;
virt_cb->TI.DEST_INC = 1;
virt_cb->TI.INTEN = 1;
virt_cb->SOURCE_AD = (uint32_t)phys_src;
virt_cb->DEST_AD = (uint32_t)phys_dst;
virt_cb->TXFR_LEN = 4;
virt_cb->reserved[0] = 0;
virt_cb->reserved[1] = 0;
printk("srcAddr %u\n", *virt_src);
printk("destAddr %u\n", *virt_dst);
//dma_regs->CS = (DMA_CS_t){.RESET = 1, .END = 1};
dma_regs->CS.RESET = 1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.END = 1, .INT = 1};
dma_regs->CS.INT = 1;
dma_regs->CS.END = 1;
dma_regs->CONBLK_AD = (uint32_t)phys_cb;
//dma_regs->DEBUG = (DMA_DEBUG_t){.READ_LAST_NOT_SET_ERROR = 1, .FIFO_ERROR = 1, .READ_ERROR = 1};
dma_regs->DEBUG.READ_LAST_NOT_SET_ERROR = 1;
dma_regs->DEBUG.FIFO_ERROR = 1;
dma_regs->DEBUG.READ_ERROR =1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.RESET = 1, .PRIORITY = 8, .PANIC_PRIORITY = 8, .ACTIVE = 1};
dma_regs->CS.RESET = 1;
udelay(10);
dma_regs->CS.PRIORITY = 8;
dma_regs->CS.PANIC_PRIORITY = 8;
dma_regs->CS.ACTIVE = 1;
if(dma_regs->CS.ERROR) printk("ERROR %d %d\n", dma_regs->CS.ACTIVE, dma_regs->CS.PANIC_PRIORITY);
//np = of_find_compatible_node(NULL,NULL,"brcm,bcm2835-system-timer");
np = of_find_node_by_path("/soc/dma@7e007000");
if (np == NULL){
printk("Error node not found\n");
}
// printk("node name %s\n", np->name);
IRQ_DMA0 = irq_of_parse_and_map(np, 0);
if (IRQ_DMA0 <= 0) {
printk("Can't parse IRQ\n");
}
mret = request_irq(IRQ_DMA0, dma_irq_fn, IRQF_SHARED, "dma", &dma_irq_fn);
if (mret < 0) printk(KERN_ALERT "%s: dma request_irg failed with %d\n", __func__, mret);
return 0;
}
static void __exit ofcd_exit(void) /* Destructor */
{
free_irq( IRQ_DMA0, &dma_irq_fn );
//dma_unmap_single(dev, dma_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
//kfree(cpu_addr);
dma_free_coherent(dev, 32, virt_cb, phys_cb);
dma_free_coherent(dev, 4, virt_src, phys_src);
dma_free_coherent(dev, 4, virt_dst, phys_dst);
iounmap(dma_regs);
// device_unregister(dev);
misc_deregister(&sample_device);
printk(KERN_INFO "Module unregistered\n");
}
module_init(ofcd_init);
module_exit(ofcd_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("MBajor>");
MODULE_DESCRIPTION("PiCNC driver");
MODULE_VERSION("0.1");
我希望这会有所帮助。