我正在尝试使用std::shared_ptr
指向一个线程生成并由另一个线程使用的数据。存储字段是指向基类的共享指针
以下是我可以创建的最简单的Google测试,可以解决问题:
#include "gtest/gtest.h"
#include <thread>
struct A
{
virtual ~A() {}
virtual bool isSub() { return false; }
};
struct B : public A
{
bool isSub() override { return true; }
};
TEST (SharedPointerTests, threadedProducerConsumer)
{
int loopCount = 10000;
shared_ptr<A> ptr;
thread producer([loopCount,&ptr]()
{
for (int i = 0; i < loopCount; i++)
ptr = make_shared<B>(); // <--- THREAD
});
thread consumer([loopCount,&ptr]()
{
for (int i = 0; i < loopCount; i++)
shared_ptr<A> state = ptr; // <--- THREAD
});
producer.join();
consumer.join();
}
运行时,有时会给出:
[ RUN ] SharedPointerTests.threadedProducerConsumer
pure virtual method called
terminate called without an active exception
Aborted (core dumped)
GDB在显示的位置显示了两个线程的崩溃。堆栈如下:
#0 0x00000000006f430a in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x7fffe00008c0)
at /usr/include/c++/4.8/bits/shared_ptr_base.h:144
#1 0x00000000006f26a7 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x7fffdf960bc8,
__in_chrg=<optimized out>) at /usr/include/c++/4.8/bits/shared_ptr_base.h:553
#2 0x00000000006f1692 in std::__shared_ptr<A, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x7fffdf960bc0,
__in_chrg=<optimized out>) at /usr/include/c++/4.8/bits/shared_ptr_base.h:810
#3 0x00000000006f16ca in std::shared_ptr<A>::~shared_ptr (this=0x7fffdf960bc0, __in_chrg=<optimized out>)
at /usr/include/c++/4.8/bits/shared_ptr.h:93
#4 0x00000000006e7288 in SharedPointerTests_threadedProducerConsumer_Test::__lambda2::operator() (__closure=0xb9c940)
at /home/drew/dev/SharedPointerTests.hh:54
#5 0x00000000006f01ce in std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda2()>::_M_invoke<>(std::_Index_tuple<>) (this=0xb9c940) at /usr/include/c++/4.8/functional:1732
#6 0x00000000006efe13 in std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda2()>::operator()(void) (
this=0xb9c940) at /usr/include/c++/4.8/functional:1720
#7 0x00000000006efb7c in std::thread::_Impl<std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda2()> >::_M_run(void) (this=0xb9c928) at /usr/include/c++/4.8/thread:115
#8 0x00007ffff6d19ac0 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#9 0x00007ffff717bf8e in start_thread (arg=0x7fffdf961700) at pthread_create.c:311
#10 0x00007ffff647ee1d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:113
#0 0x0000000000700573 in std::allocator_traits<std::allocator<std::_Sp_counted_ptr_inplace<B, std::allocator<B>, (__gnu_cxx::_Lock_policy)2> > >::_S_destroy<std::_Sp_counted_ptr_inplace<B, std::allocator<B>, (__gnu_cxx::_Lock_policy)2> > (__a=..., __p=0x7fffe00008f0)
at /usr/include/c++/4.8/bits/alloc_traits.h:281
#1 0x00000000007003b6 in std::allocator_traits<std::allocator<std::_Sp_counted_ptr_inplace<B, std::allocator<B>, (__gnu_cxx::_Lock_policy)2> > >::destroy<std::_Sp_counted_ptr_inplace<B, std::allocator<B>, (__gnu_cxx::_Lock_policy)2> > (__a=..., __p=0x7fffe00008f0)
at /usr/include/c++/4.8/bits/alloc_traits.h:405
#2 0x00000000006ffe76 in std::_Sp_counted_ptr_inplace<B, std::allocator<B>, (__gnu_cxx::_Lock_policy)2>::_M_destroy (
this=0x7fffe00008f0) at /usr/include/c++/4.8/bits/shared_ptr_base.h:416
#3 0x00000000006f434c in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x7fffe00008f0)
at /usr/include/c++/4.8/bits/shared_ptr_base.h:161
#4 0x00000000006f26a7 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x7fffe8161b68,
__in_chrg=<optimized out>) at /usr/include/c++/4.8/bits/shared_ptr_base.h:553
#5 0x00000000006f16b0 in std::__shared_ptr<A, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x7fffe8161b60,
__in_chrg=<optimized out>) at /usr/include/c++/4.8/bits/shared_ptr_base.h:810
#6 0x00000000006f4c3f in std::__shared_ptr<A, (__gnu_cxx::_Lock_policy)2>::operator=<B>(std::__shared_ptr<B, (__gnu_cxx::_Lock_policy)2>&&) (this=0x7fffffffdcb0, __r=<unknown type in /home/drew/dev/unittests, CU 0x0, DIE 0x58b8c>)
at /usr/include/c++/4.8/bits/shared_ptr_base.h:897
#7 0x00000000006f2d2a in std::shared_ptr<A>::operator=<B>(std::shared_ptr<B>&&) (this=0x7fffffffdcb0,
__r=<unknown type in /home/drew/dev/unittests, CU 0x0, DIE 0x55e1c>)
at /usr/include/c++/4.8/bits/shared_ptr.h:299
#8 0x00000000006e7232 in SharedPointerTests_threadedProducerConsumer_Test::__lambda1::operator() (__closure=0xb9c7a0)
at /home/drew/dev/SharedPointerTests.hh:48
#9 0x00000000006f022c in std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda1()>::_M_invoke<>(std::_Index_tuple<>) (this=0xb9c7a0) at /usr/include/c++/4.8/functional:1732
#10 0x00000000006efe31 in std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda1()>::operator()(void) (
this=0xb9c7a0) at /usr/include/c++/4.8/functional:1720
#11 0x00000000006efb9a in std::thread::_Impl<std::_Bind_simple<SharedPointerTests_threadedProducerConsumer_Test::TestBody()::__lambda1()> >::_M_run(void) (this=0xb9c788) at /usr/include/c++/4.8/thread:115
#12 0x00007ffff6d19ac0 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#13 0x00007ffff717bf8e in start_thread (arg=0x7fffe8162700) at pthread_create.c:311
#14 0x00007ffff647ee1d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:113
我在这里尝试了各种方法,包括使用std::dynamic_pointer_cast
,但我没有运气。
实际上,生产者在A
(每种类型一个实例)中按type_id
存储许多不同的std::map<type_id const*,std::shared_ptr<A>>
子类,我按类型从消费者那里查找。
我的理解是std::shared_ptr
对于这些类型的操作是线程安全的。我错过了什么?
答案 0 :(得分:3)
shared_ptr
在其控制块上具有线程安全性。创建shared_ptr
并指向新创建的资源时,它会创建一个控制块。根据{{3}},这有:
拥有资源的shared_ptr对象共享一个控制块。控制块保存:
- 拥有资源的shared_ptr对象的数量
- 指向资源的weak_ptr对象的数量
- 该资源的删除者(如果有),
- 控制块的自定义分配器(如果有)。
这意味着shared_ptr
将确保指向同一内存的多个shared_ptr
副本没有同步问题。但是,它不管理内存本身的同步。请参阅有关螺纹安全的部分(强调我的)
多个线程可以同时读取和写入不同的 shared_ptr对象,即使这些对象是共享所有权的副本。
您的代码共享ptr
,这意味着您有数据竞争。另请注意,在计划运行使用者线程之前,生产者线程可能会生成多个对象,这意味着您将丢失一些对象。
正如评论中指出的那样,您可以使用MSDN。然后生产者线程看起来像:
thread producer([loopCount,&ptr]()
{
for (int i = 0; i < loopCount; i++)
{
auto p = std::make_shared<B>(); // <--- THREAD
std::atomic_store<A>( &ptr, p );
}
});
创建对象,然后以原子方式存储到ptr
中。然后,消费者需要以原子方式加载对象。
thread consumer([loopCount,&ptr]()
{
for (int i = 0; i < loopCount; i++)
{
auto state = std::atomic_load<A>( &ptr ); // <--- THREAD
}
});
这仍然有一个缺点,即当允许生产者线程运行多次迭代时,对象将会丢失。
这些示例是在Visual Studio 2012中编写的。目前,gcc尚未完全实现原子shared_ptr
访问,如atomic operations on shared_ptr部分所述