我目前拥有的是一个非常天真的实现,可以对数据进行分块并对其进行处理。对于816mb的文件,它运行大约34秒,但我希望它比这快。我已经对它进行了分析,看看哪些比特占用了大部分时间,但是大部分需要大量时间的内容都围绕着python模块函数。结果,我不知道我能做些什么来提高性能。任何和所有的帮助将是非常受欢迎的。我已在下面列出了个人资料和相关代码。
Sun May 5 02:10:28 2013 chunking.prof
50868044 function calls in 42.901 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
358204 13.791 0.000 30.722 0.000 reader_variants.py:361(_unpack_from)
7164080 7.331 0.000 10.812 0.000 reader_variants.py:116(_null_terminate)
10029712 4.762 0.000 4.762 0.000 reader_variants.py:210(_missing_values_mod)
1 4.117 4.117 4.117 4.117 {numpy.core.multiarray.array}
716407 3.751 0.000 5.927 0.000 {map}
17193696 2.176 0.000 2.176 0.000 reader_variants.py:358(<lambda>)
7164080 1.906 0.000 1.906 0.000 {method 'lstrip' of 'str' objects}
7164080 1.574 0.000 1.574 0.000 {method 'index' of 'str' objects}
358204 1.204 0.000 37.672 0.000 reader_variants.py:353(parse_records)
358204 1.135 0.000 1.135 0.000 {_struct.unpack_from}
1 0.417 0.417 42.901 42.901 <string>:1(<module>)
779 0.349 0.000 38.021 0.049 reader_variants.py:349(process_chunk)
779 0.330 0.000 0.330 0.000 {method 'read' of 'file' objects}
358983 0.041 0.000 0.041 0.000 {len}
1 0.009 0.009 42.484 42.484 reader_variants.py:306(genfromdta_cc)
779 0.006 0.000 0.006 0.000 {method 'extend' of 'list' objects}
48 0.000 0.000 0.000 0.000 reader_variants.py:324(<lambda>)
1 0.000 0.000 4.117 4.117 numeric.py:256(asarray)
1 0.000 0.000 0.000 0.000 {method 'seek' of 'file' objects}
1 0.000 0.000 0.000 0.000 {sum}
1 0.000 0.000 0.000 0.000 {method 'join' of 'str' objects}
1 0.000 0.000 0.000 0.000 {zip}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
def genfromdta_cc(self, missing_flt=-999., encoding=None, pandas=False,
convert_dates=True, size=1024*1024): # default chunk size 1mb
"""
reads stata data by chunking the file
"""
try:
self._file.seek(self._data_location)
except Exception:
pass
nobs = self._header['nobs']
varnames = self._header['varlist']
typlist = self._header['typlist']
types = self._header['dtyplist']
dt = np.dtype(zip(varnames, types))
data=[]
fmt = ''.join(map(lambda x: str(x)+'s' if type(x) is int else x, typlist))
record_size = sum(self._col_sizes)
maxrecords = size/record_size # max number of records we can fit in size
if maxrecords > nobs: # if the file is smaller than the ideal chunk size
chunk_size = nobs*record_size # read the entire file in
else:
chunk_size = maxrecords * record_size
chunk_size_leftover = (nobs*record_size)%chunk_size
numchunks = nobs / maxrecords # number of chunks
numchunks_leftover = nobs % maxrecords #number of records left over
for i in xrange(numchunks):
chunk = self._file.read(chunk_size)
data.extend(self.process_chunk(chunk, fmt, record_size, missing_flt))
# last chunk contains less than max number of records
if numchunks_leftover > 0:
chunk = self._file.read(chunk_size_leftover)
data.extend(self.process_chunk(chunk, fmt, record_size, missing_flt))
return np.asarray(data, dtype=dt) # return data as numpy array
def process_chunk(self, chunk, fmt, record_size, missing_flt):
iternum = len(chunk)/record_size #number of records to read
return [self.parse_records(chunk, fmt, record_size, missing_flt, i) for i in xrange(iternum)]
def parse_records(self, chunk, fmt, record_size, missing_flt, offset):
# create record
record = self._unpack_from(fmt, chunk, record_size*offset)
# check to see if None in record
if None in record:
record = map(lambda x: missing_flt if x is None else x, record)
return tuple(record)
def _unpack_from(self, fmt, byt, offset):
typlist = self._header['typlist']
d = map(None, unpack_from(self._header['byteorder']+fmt, byt, offset))
d = [self._null_terminate(d[i], self._encoding) if type(typlist[i]) is int else self._missing_values_mod(d[i], typlist[i]) for i in xrange(len(d))]
return d
答案 0 :(得分:1)
您可以采取的一种方法是将整个文件读入内存。假设你有几GB的RAM(即使在几年前的PC上也不常见),816 MB应该适合RAM。在这种情况下,你可以取消分块;
import struct
with open('datafile.bin', 'r') as df:
rawdata = df.read()
fmt = '17s244s244s53sh203s68sh14sff203s192s192s192s192s192s22sffffff23s36sffffff12s11s23s21sdhhfdfdfdfdf'
recsz = struct.calcsize(fmt)
results = []
for offset in xrange(0, len(rawdata)/recsize):
results.append(struct.unpack_from(rawdata, fmt, offset))
从您的代码看,记录的大小是否恒定?因此,即使您不想将整个文件读入内存,也可以读取记录大小的文件;
import struct
fmt = '17s244s244s53sh203s68sh14sff203s192s192s192s192s192s22sffffff23s36sffffff12s11s23s21sdhhfdfdfdfdf'
recsz = struct.calcsize(fmt)
results = []
with open('datafile.bin', 'r') as df:
s = df.read(recsz)
results.append(struct.unpack(fmt, s))
此方法也可以使用multiprocessing.Pool.map()
分布在所有核心上。因此,如果您有 n 核心,则可以让 n 进程读取和解包记录。充其量这可以减少1 / n 所需的时间。 (实际上需要花费更多时间,因为必须对记录进行腌制并将其发送回主进程。)
(N.B。:有助于您向我们展示您正在阅读的数据类型,例如您使用的格式字符串。)