重新编码因子水平

时间:2013-04-29 05:40:08

标签: r

我有以下数据框:

forStack
  AGE  BMI time          A         B      ID
 1  59 23.8    0     (0,75]  (4,14.9] 9000099
 2  69 29.8    0 (96.4,100]  (-Inf,0] 9000296
 3  71 22.7    0  (75,89.3]  (4,14.9] 9000622
 4  56 32.4    0     (0,75] (14.9,68] 9000798
 5  72 30.7    0     (0,75] (14.9,68] 9001104
 6  75 23.5    0 (96.4,100]     (0,4] 9001400

dput (forStack)
structure(list(AGE = c(59, 69, 71, 56, 72, 75), BMI = c(23.8, 
29.8, 22.7, 32.4, 30.7, 23.5), time = c(0, 0, 0, 0, 0, 0), A = structure(c(2L, 
5L, 3L, 2L, 2L, 5L), .Label = c("(-Inf,0]", "(0,75]", "(75,89.3]", 
"(89.3,96.4]", "(96.4,100]", "(100, Inf]"), class = "factor"), 
B = structure(c(3L, 1L, 3L, 4L, 4L, 2L), .Label = c("(-Inf,0]", 
"(0,4]", "(4,14.9]", "(14.9,68]", "(68, Inf]"), class = "factor"), 
ID = c(9000099, 9000296, 9000622, 9000798, 9001104, 9001400
)), .Names = c("AGE", "BMI", "time", "A", "B", "ID"), row.names = c(NA, 
6L), class = "data.frame")

变量AB是表示四分位数的因子:

   forStack$A
   [1] (0,75]     (96.4,100] (75,89.3]  (0,75]     (0,75]     (96.4,100]
   Levels: (-Inf,0] (0,75] (75,89.3] (89.3,96.4] (96.4,100] (100, Inf]

   forStack$B
   [1] (4,14.9]  (-Inf,0]  (4,14.9]  (14.9,68] (14.9,68] (0,4]    
   Levels: (-Inf,0] (0,4] (4,14.9] (14.9,68] (68, Inf]

我想将AB值重新编码为两级因子,如下所示:

对于A,应将上限系数(96.4,100](100, Inf]重新编码为0级别,其他级别为1级

对于B,最低要素级别(-Inf,0](0,4]应记录为0级别,其他级别为1级

因此,数据框应如下所示:

 forStack
  AGE  BMI time          A         B      ID
 1  59 23.8    0         1         1   9000099
 2  69 29.8    0         0         0   9000296
 3  71 22.7    0         1         1   9000622
 4  56 32.4    0         1         1   9000798
 5  72 30.7    0         1         1   9001104
 6  75 23.5    0         0         0   9001400

最有效的方法是什么? 非常感谢您提前

2 个答案:

答案 0 :(得分:6)

这是一种方法:

within(forStack, {
  A <- as.numeric(!A %in% tail(levels(A), 2))
  B <- as.numeric(!B %in% head(levels(B), 2))
})
#   AGE  BMI time A B      ID
# 1  59 23.8    0 1 1 9000099
# 2  69 29.8    0 0 0 9000296
# 3  71 22.7    0 1 1 9000622
# 4  56 32.4    0 1 1 9000798
# 5  72 30.7    0 1 1 9001104
# 6  75 23.5    0 0 0 9001400

这里的基本想法是headtail都有一个“n”参数,可让您从“头部”和“尾部”指定所需的值。你的矢量或数据集。这样,我们就可以轻松抓取向量A的(96.4,100](100, Inf]以及向量B的相关值。

within是动态替换data.frame中的值的便捷方式。

答案 1 :(得分:3)

如您所知,这些因素是有序的,您可以执行以下操作

within(forStack, {
    Ar <- (as.integer(A) < length(levels(A))-1)*1
    Br <- (as.integer(B) > 2)*1
})