我有一个包含如下值的列表:
[['2013-04-02 19:42:00.474', '1'],
['2013-04-02 19:42:00.529', '2'],
['2013-04-02 19:42:00.543', '3'],
['2013-04-02 19:42:00.592', '4'],
['2013-04-02 19:42:16.671', '5'],
['2013-04-02 19:42:16.686', '6'],
['2013-04-02 19:42:16.708', '7'],
['2013-04-02 19:42:16.912', '8'],
['2013-04-02 19:42:16.941', '9'],
['2013-04-02 19:42:19.721', '10'],
['2013-04-02 19:42:22.826', '11'],
['2013-04-02 19:42:25.609', '8'],
['2013-04-02 19:42:58.225', '5']]
我知道如果这是在csv文件中,我可以将其读入DataFrame,并将Date和Timestamps放入索引中以使DataFrame成为时间序列。
如何在不将列表保存到csv文件的情况下实现此目的?
我尝试了df = pd.DataFrame(tlist,columns = ['date_time','count'])然后df = df.set_index('date_time')
但是索引值是作为对象出现的,而不是TimeStamps:
df.index
Index([2013-04-02 19:42:00.474, 2013-04-02 19:42:00.529, 2013-04-02 19:42:00.543, ............], dtype=object)
答案 0 :(得分:3)
In [40]: df.index = df.index.to_datetime()
In [41]: df.index
Out[41]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-04-02 19:42:00.474000, ..., 2013-04-02 19:42:58.225000]
Length: 13, Freq: None, Timezone: None