我使用pcolor从2D数组中绘制信息。但是,数组中的信息会在迭代中发生变化,我想动态更新颜色映射,以便实时显示变化。我怎么能以最简单的方式做到这一点?
编辑 - 示例:
from __future__ import division
from pylab import *
import random
n = 50 # number of iterations
x = arange(0, 10, 0.1)
y = arange(0, 10, 0.1)
T = zeros([100,100]) # 10/0.1 = 100
X,Y = meshgrid(x, y)
"""initial conditions"""
for x in range(100):
for y in range(100):
T[x][y] = random.random()
pcolor(X, Y, T, cmap=cm.hot, vmax=abs(T).max(), vmin=0)
colorbar()
axis([0,10,0,10])
show() # colormap of the initial array
"""main loop"""
for i in range(n):
for x in range(100):
for y in range(100):
T[x][y] += 0.1 # here i do some calculations, the details are not important
# here I want to update the color map with the new array (T)
由于
答案 0 :(得分:2)
我建议使用imshow
(doc):
# figure set up
fig, ax_lst = plt.subplots(2, 1)
ax_lst = ax_lst.ravel()
#fake data
data = rand(512, 512)
x = np.linspace(0, 5, 512)
X, Y = meshgrid(x, x)
data2 = np.sin(X ** 2 + Y **2)
# plot the first time#fake data
im = ax_lst[0].imshow(data, interpolation='nearest',
origin='bottom',
aspect='auto', # get rid of this to have equal aspect
vmin=np.min(data),
vmax=np.max(data),
cmap='jet')
cb = plt.colorbar(im)
pc = ax_lst[1].pcolor(data)
cb2 = plt.colorbar(pc)
要使用imshow更新数据,只需设置数据数组,它就会为您完成所有规范化和颜色映射:
# update_data (imshow)
im.set_data(data2)
plt.draw()
要对pcolor
的事情做同样的事情,你需要对自己进行规范化和颜色映射(并猜测行主要与列主要权利):
my_cmap = plt.get_cmap('jet')
#my_nom = # you will need to scale your read data between [0, 1]
new_color = my_cmap(data2.T.ravel())
pc.update({'facecolors':new_color})
draw()
答案 1 :(得分:0)
您可以将事件连接到您的身材并调用该事件的特定功能。在下文中,我采用了matplotlib
文档的示例,并添加了一个函数ontype
。在键盘上按下1
时调用此方法。然后调用X * func3()
。 Ontype
与fig.canvas.mpl_connect('key_press_event',ontype)
绑定在一起。以类似的方式,您可以依赖时间触发常规事件。
#!/usr/bin/env python
"""
See pcolor_demo2 for an alternative way of generating pcolor plots
using imshow that is likely faster for large grids
"""
from __future__ import division
from matplotlib.patches import Patch
from pylab import *
def ontype(event):
''' function that is called on key event (press '1')'''
if event.key == '1':
print 'It is working'
fig.gca().clear()
# plot new function X * func3(X, Y)
Z = X * func3(X, Y)
pcolor(X, Y, Z, cmap=cm.RdBu, vmax=abs(Z).max(), vmin=-abs(Z).max())
fig.canvas.draw()
def func3(x,y):
return (1- x/2 + x**5 + y**3)*exp(-x**2-y**2)
# make these smaller to increase the resolution
dx, dy = 0.05, 0.05
x = arange(-3.0, 3.0001, dx)
y = arange(-3.0, 3.0001, dy)
X,Y = meshgrid(x, y)
Z = func3(X, Y)
fig=figure(figsize=(16,8))
# connect ontype to canvas
fig.canvas.mpl_connect('key_press_event',ontype)
pcolor(X, Y, Z, cmap=cm.RdBu, vmax=abs(Z).max(), vmin=-abs(Z).max())
colorbar()
axis([-3,3,-3,3])
show()
答案 2 :(得分:0)
我在这里有一个简单的示例,该示例如何在模拟过程中更新ax.pcolor
(或更快速的表亲ax.pcolormesh
)。
def make_movie(fig, meshData, conc, fout='writer_test.mp4',
dpi=150, metadata={}):
'''
Make a movie (on disk) starting from a first image generated with matplotlib,
by updating only the values that were dispayed with ax.pcolormesh(...).
Parameters
----------
meshData: mesh as returned by ax.pcolormesh()
conc: obj returned by readUCN
computed concentrations
fout: str
name of output file, with or without '.mp4' extension.
dpi: int
dots per inch of output movie
metadata: dict
passed on to FFMpegWriter.savings(fout, ...)
'''
plt.rcParams['animation.ffmpeg_path'] = '/usr/local/bin/ffmpeg'
from matplotlib.animation import FFMpegWriter
writer = FFMpegWriter(fps=15, metadata=metadata)
totims = conc.totim # get times of computed concentrations
with writer.saving(fig, fout, dpi):
for totim in totims:
C = conc.at_t(totim)[:, 0, :] # 3D --> 2D Xsection concentrations
#newcolors = cmap(norm(C.ravel()))
#meshData.update({'facecolors': newcolors})
meshData.update({'array': C.ravel()}) # reset array to new conc.
fig.canvas.draw_idle()
writer.grab_frame()
以#newcolors
和#meshData.update
开头的行如上述@tacaswell所建议。以meshdata.udate({array ...
开头的行将替换它们。它只是更新数据而无需计算新的面部颜色。最后一种方法更简单,也可以正常工作。不需要转置数据数组。