['b','b','b','a','a','c','c']
numpy.unique给出了
['a','b','c']
如何保留原始订单
['b','a','c']
很棒的答案。奖金问题。为什么这些方法都不适用于此数据集? http://www.uploadmb.com/dw.php?id=1364341573以下是问题numpy sort wierd behavior
答案 0 :(得分:48)
unique()
很慢,O(Nlog(N)),但您可以通过以下代码执行此操作:
import numpy as np
a = np.array(['b','a','b','b','d','a','a','c','c'])
_, idx = np.unique(a, return_index=True)
print(a[np.sort(idx)])
输出:
['b' 'a' 'd' 'c']
对于大数组O(N), Pandas.unique()
要快得多:
import pandas as pd
a = np.random.randint(0, 1000, 10000)
%timeit np.unique(a)
%timeit pd.unique(a)
1000 loops, best of 3: 644 us per loop
10000 loops, best of 3: 144 us per loop
答案 1 :(得分:17)
使用return_index
的{{1}}功能。返回元素首次出现在输入中的索引。然后np.unique
那些指数。
argsort
答案 2 :(得分:7)
a = ['b','b','b','a','a','c','c']
[a[i] for i in sorted(np.unique(a, return_index=True)[1])]
答案 3 :(得分:2)
如果您尝试删除已排序的可迭代的重复项,则可以使用itertools.groupby
函数:
>>> from itertools import groupby
>>> a = ['b','b','b','a','a','c','c']
>>> [x[0] for x in groupby(a)]
['b', 'a', 'c']
这更像是unix'uniq'命令,因为它假定列表已经排序。当您在未排序的列表上尝试时,您将得到以下内容:
>>> b = ['b','b','b','a','a','c','c','a','a']
>>> [x[0] for x in groupby(b)]
['b', 'a', 'c', 'a']
答案 4 :(得分:1)
如果你想删除重复的条目,比如Unix工具uniq
,这是一个解决方案:
def uniq(seq):
"""
Like Unix tool uniq. Removes repeated entries.
:param seq: numpy.array
:return: seq
"""
diffs = np.ones_like(seq)
diffs[1:] = seq[1:] - seq[:-1]
idx = diffs.nonzero()
return seq[idx]
答案 5 :(得分:1)
#List we need to remove duplicates from while preserving order x = ['key1', 'key3', 'key3', 'key2'] thisdict = dict.fromkeys(x) #dictionary keys are unique and order is preserved print(list(thisdict)) #convert back to list output: ['key1', 'key3', 'key2']
答案 6 :(得分:0)
使用OrderedDict(比列表理解要快)
from collections import OrderedDict
a = ['b','a','b','a','a','c','c']
list(OrderedDict.fromkeys(a))