这里有点新,但试图使用statsmodel ARMA预测工具。我从雅虎导入了一些股票数据并得到ARMA给我适合的参数。但是,当我使用预测代码时,我收到的是一个错误列表,我似乎无法弄清楚。不太确定我在这里做错了什么:
import pandas
import statsmodels.tsa.api as tsa
from pandas.io.data import DataReader
start = pandas.datetime(2013,1,1)
end = pandas.datetime.today()
data = DataReader('GOOG','yahoo')
arma =tsa.ARMA(data['Close'], order =(2,2))
results= arma.fit()
results.predict(start=start,end=end)
错误是:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
C:\Windows\system32\<ipython-input-84-25a9b6bc631d> in <module>()
13 results= arma.fit()
14 results.summary()
---> 15 results.predict(start=start,end=end)
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\base\wrapp
er.pyc in wrapper(self, *args, **kwargs)
88 results = object.__getattribute__(self, '_results')
89 data = results.model.data
---> 90 return data.wrap_output(func(results, *args, **kwargs), how)
91
92 argspec = inspect.getargspec(func)
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in predict(self, start, end, exog, dynamic)
1265
1266 """
-> 1267 return self.model.predict(self.params, start, end, exog, dynamic
)
1268
1269 def forecast(self, steps=1, exog=None, alpha=.05):
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in predict(self, params, start, end, exog, dynamic)
497
498 # will return an index of a date
--> 499 start = self._get_predict_start(start, dynamic)
500 end, out_of_sample = self._get_predict_end(end, dynamic)
501 if out_of_sample and (exog is None and self.k_exog > 0):
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in _get_predict_start(self, start, dynamic)
404 #elif 'mle' not in method or dynamic: # should be on a date
405 start = _validate(start, k_ar, k_diff, self.data.dates,
--> 406 method)
407 start = super(ARMA, self)._get_predict_start(start)
408 _check_arima_start(start, k_ar, k_diff, method, dynamic)
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in _validate(start, k_ar, k_diff, dates, method)
160 if isinstance(start, (basestring, datetime)):
161 start_date = start
--> 162 start = _index_date(start, dates)
163 start -= k_diff
164 if 'mle' not in method and start < k_ar - k_diff:
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in _index_date(date, dates)
37 freq = _infer_freq(dates)
38 # we can start prediction at the end of endog
---> 39 if _idx_from_dates(dates[-1], date, freq) == 1:
40 return len(dates)
41
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in _idx_from_dates(d1, d2, freq)
70 from pandas import DatetimeIndex
71 return len(DatetimeIndex(start=d1, end=d2,
---> 72 freq = _freq_to_pandas[freq])) - 1
73 except ImportError, err:
74 from pandas import DateRange
D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in __getitem__(self, key)
11 # being lazy, don't want to replace dictionary below
12 def __getitem__(self, key):
---> 13 return get_offset(key)
14 _freq_to_pandas = _freq_to_pandas_class()
15 except ImportError, err:
D:\Python27\lib\site-packages\pandas\tseries\frequencies.pyc in get_offset(name)
484 """
485 if name not in _dont_uppercase:
--> 486 name = name.upper()
487
488 if name in _rule_aliases:
AttributeError: 'NoneType' object has no attribute 'upper'
答案 0 :(得分:4)
对我来说看起来像个错误。我会调查一下。
https://github.com/statsmodels/statsmodels/issues/712
编辑:作为解决方法,您可以从DataFrame中删除DatetimeIndex并将其传递给numpy数组。它使得预测在日期方面有点棘手,但是当没有频率时使用日期进行预测已经相当棘手,所以只有起始和结束日期基本上没有意义。
import pandas
import statsmodels.tsa.api as tsa
from pandas.io.data import DataReader
import pandas
data = DataReader('GOOG','yahoo')
dates = data.index
# start at a date on the index
start = dates.get_loc(pandas.datetools.parse("1-2-2013"))
end = start + 30 # "steps"
# NOTE THE .values
arma =tsa.ARMA(data['Close'].values, order =(2,2))
results= arma.fit()
results.predict(start, end)
答案 1 :(得分:0)
当我运行你的代码时,我得到:
“ValueError:这些日期没有频率,日期2013-01-01 00:00:00不在日期索引中。请尝试给出日期索引中的日期或使用整数”
由于交易日期是在不均匀的频率(假日和周末)发生的,因此模型不够智能,无法知道正确的计算频率。
如果用索引中的整数位置替换日期,则可以得到预测结果。然后你可以简单地将原始索引放回到结果上。
prediction = results.predict(start=0, end=len(data) - 1)
prediction.index = data.index
print(prediction)
2010-01-04 689.507451
2010-01-05 627.085986
2010-01-06 624.256331
2010-01-07 608.133481
...
2017-05-09 933.700555
2017-05-10 931.290023
2017-05-11 927.781427
2017-05-12 929.661014
顺便说一下,您可能希望在每日退货而不是原始价格上运行这样的模型。以原始价格运行它并不会像你想象的那样捕捉动力并意味着回归。您的模型是建立在价格的绝对值之上,而不是价格,动量,移动平均线等的变化,您可能想要使用的其他因素。您正在创建的预测看起来非常好,因为它们只预测前一步,因此它不会捕获复合错误。这让很多人感到困惑。相对于股票价格的绝对值,错误看起来很小,但模型不会很具预测性。
我建议您阅读本演练,了解首发:
http://www.johnwittenauer.net/a-simple-time-series-analysis-of-the-sp-500-index/