堆栈跟踪:weka.core.WekaException:weka.classifiers.functions.SMO:没有足够的带有类标签的训练实例(必需:1,提供:0)!

时间:2013-03-17 13:28:07

标签: java weka

当我尝试打印实例数时,它显示0(零)。但是当我使用Weka API手动选择ARFF文件时,我的训练数据中有565个实例。我想找到错误的位置。谢谢。

private static void build_model() {
            // TODO Auto-generated method stub
            try{

            // load data    
            ArffLoader loader = new ArffLoader();
            loader.setFile(new File("D:\\MAIN PROJECT\\data.arff"));
            Instances structure = loader.getStructure();
            structure.setClassIndex(structure.numAttributes() - 1);
            System.out.println("Attributes : "+structure.numAttributes());
            System.out.println("Instances : "+structure.numInstances());

            // train SMO
            System.out.println("Before creating smo object");
            SMO smo = new SMO();
            System.out.println("SMO object created");
            smo.buildClassifier(structure);
            System.out.println("Classifier build");
            Instance current;
            while ((current = loader.getNextInstance(structure)) != null){
                smo.buildClassifier((Instances) current);
            }
            System.out.println(smo);
            System.out.println("\nModel build successfully");
            }
            catch(Exception e){
                System.out.println("\nstack trace : " + e);
            }

        }

输出:

属性:1154 实例:0 在创建smo对象之前 SMO对象已创建

堆栈跟踪:weka.core.WekaException:weka.classifiers.functions.SMO:没有足够的带有类标签的训练实例(必需:1,提供:0)!

2 个答案:

答案 0 :(得分:1)

尝试使用getDataSet()代替getStructure()

答案 1 :(得分:1)

这完全有效。

private static void build_model() {
        // TODO Auto-generated method stub
        try{

        // load data    
        ArffLoader loader = new ArffLoader();
        loader.setFile(new File("D:\\MAIN PROJECT\\data.arff"));
        Instances structure = loader.getDataSet();
        structure.setClassIndex(structure.numAttributes() - 1);
        System.out.println("Attributes : "+structure.numAttributes());
        System.out.println("Instances : "+structure.numInstances());

        // train SMO
        System.out.println("Before creating smo object");
        SMO smo = new SMO();
        System.out.println("SMO object created");
        smo.buildClassifier(structure);
        System.out.println("Classifier build");
        System.out.println(smo);
        System.out.println("\nModel build successfully");
        }
        catch(Exception e){
            System.out.println("\nstack trace : " + e);
        }

    }