我经常遇到这种形式的问题,但还没有找到一个好的解决方案:
假设我们有两个代表电子商务系统的数据库表。
userData (userId, name, ...)
orderData (orderId, userId, orderType, createDate, ...)
对于系统中的所有用户,请选择其用户信息,类型为“1”的最新订单信息,以及类型为“2”的最新订单信息。我想在一个查询中执行此操作。以下是一个示例结果:
(userId, name, ..., orderId1, orderType1, createDate1, ..., orderId2, orderType2, createDate2, ...)
(101, 'Bob', ..., 472, '1', '4/25/2008', ..., 382, '2', '3/2/2008', ...)
答案 0 :(得分:4)
这应该有效,你必须调整表/列名称:
select ud.name,
order1.order_id,
order1.order_type,
order1.create_date,
order2.order_id,
order2.order_type,
order2.create_date
from user_data ud,
order_data order1,
order_data order2
where ud.user_id = order1.user_id
and ud.user_id = order2.user_id
and order1.order_id = (select max(order_id)
from order_data od1
where od1.user_id = ud.user_id
and od1.order_type = 'Type1')
and order2.order_id = (select max(order_id)
from order_data od2
where od2.user_id = ud.user_id
and od2.order_type = 'Type2')
对数据进行非规范化也可能是一个好主意。这类事情的成本相当高。因此,您可以向您的userData添加last_order_date
。
答案 1 :(得分:3)
我提供了三种不同的方法来解决这个问题:
所有解决方案都假设我们根据orderId
列确定“最新”订单。使用createDate
列会因时间戳冲突而增加复杂性并严重影响性能,因为createDate
可能不是索引键的一部分。我只使用MS SQL Server 2005测试了这些查询,因此我不知道它们是否可以在您的服务器上运行。
解决方案(1)和(2)几乎完全相同。实际上,它们都会导致数据库中的读取次数相同。
在处理大型数据集时,解决方案(3)不是首选方法。它始终使数百个逻辑读取超过(1)和(2)。当过滤一个特定用户时,方法(3)与其他方法相当。在单用户案例中,cpu时间的下降有助于抵消显着更高的读取次数;但是,随着磁盘驱动器变得更加繁忙并且发生缓存未命中,这种轻微优势将消失。
对于所呈现的方案,如果DBMS支持,则使用数据透视方法。它需要的代码少于case语句,并且将来简化添加订单类型。
请注意,在某些情况下,PIVOT不够灵活,使用案例陈述的特征值函数是可行的方法。
方法(1)使用PIVOT:
select
ud.userId, ud.fullname,
od1.orderId as orderId1, od1.createDate as createDate1, od1.orderType as orderType1,
od2.orderId as orderId2, od2.createDate as createDate2, od2.orderType as orderType2
from userData ud
inner join (
select userId, [1] as typeOne, [2] as typeTwo
from (select
userId, orderType, orderId
from orderData) as orders
PIVOT
(
max(orderId)
FOR orderType in ([1], [2])
) as LatestOrders) as LatestOrders on
LatestOrders.userId = ud.userId
inner join orderData od1 on
od1.orderId = LatestOrders.typeOne
inner join orderData od2 on
od2.orderId = LatestOrders.typeTwo
方法(2)使用案例陈述:
select
ud.userId, ud.fullname,
od1.orderId as orderId1, od1.createDate as createDate1, od1.orderType as orderType1,
od2.orderId as orderId2, od2.createDate as createDate2, od2.orderType as orderType2
from userData ud
-- assuming not all users will have orders use outer join
inner join (
select
od.userId,
-- can be null if no orders for type
max (case when orderType = 1
then ORDERID
else null
end) as maxTypeOneOrderId,
-- can be null if no orders for type
max (case when orderType = 2
then ORDERID
else null
end) as maxTypeTwoOrderId
from orderData od
group by userId) as maxOrderKeys on
maxOrderKeys.userId = ud.userId
inner join orderData od1 on
od1.ORDERID = maxTypeTwoOrderId
inner join orderData od2 on
OD2.ORDERID = maxTypeTwoOrderId
方法(3)在where子句中使用内联查询(基于Steve K.的回复):
select ud.userId,ud.fullname,
order1.orderId, order1.orderType, order1.createDate,
order2.orderId, order2.orderType, order2.createDate
from userData ud,
orderData order1,
orderData order2
where ud.userId = order1.userId
and ud.userId = order2.userId
and order1.orderId = (select max(orderId)
from orderData od1
where od1.userId = ud.userId
and od1.orderType = 1)
and order2.orderId = (select max(orderId)
from orderData od2
where od2.userId = ud.userId
and od2.orderType = 2)
用于生成表和1000个用户的脚本,每个用户100个订单:
CREATE TABLE [dbo].[orderData](
[orderId] [int] IDENTITY(1,1) NOT NULL,
[createDate] [datetime] NOT NULL,
[orderType] [tinyint] NOT NULL,
[userId] [int] NOT NULL
)
CREATE TABLE [dbo].[userData](
[userId] [int] IDENTITY(1,1) NOT NULL,
[fullname] [nvarchar](50) NOT NULL
)
-- Create 1000 users with 100 order each
declare @userId int
declare @usersAdded int
set @usersAdded = 0
while @usersAdded < 1000
begin
insert into userData (fullname) values ('Mario' + ltrim(str(@usersAdded)))
set @userId = @@identity
declare @orderSetsAdded int
set @orderSetsAdded = 0
while @orderSetsAdded < 10
begin
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-06-08', 1)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-02-08', 1)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-08-08', 1)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-09-08', 1)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-01-08', 1)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-06-06', 2)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-02-02', 2)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-08-09', 2)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-09-01', 2)
insert into orderData (userId, createDate, orderType)
values ( @userId, '01-01-04', 2)
set @orderSetsAdded = @orderSetsAdded + 1
end
set @usersAdded = @usersAdded + 1
end
除了SQL事件探查器之外,用于测试MS SQL Server上的查询性能的小代码片段:
-- Uncomment these to clear some caches
--DBCC DROPCLEANBUFFERS
--DBCC FREEPROCCACHE
set statistics io on
set statistics time on
-- INSERT TEST QUERY HERE
set statistics time off
set statistics io off
答案 2 :(得分:1)
抱歉,我面前没有oracle,但这是我在oracle中所做的基本结构:
SELECT b.user_id, b.orderid, b.orderType, b.createDate, <etc>,
a.name
FROM orderData b, userData a
WHERE a.userid = b.userid
AND (b.userid, b.orderType, b.createDate) IN (
SELECT userid, orderType, max(createDate)
FROM orderData
WHERE orderType IN (1,2)
GROUP BY userid, orderType)
答案 3 :(得分:1)
T-SQL示例解决方案(MS SQL):
SELECT
u.*
, o1.*
, o2.*
FROM
(
SELECT
, userData.*
, (SELECT TOP 1 orderId.url FROM orderData WHERE orderData.userId=userData.userId AND orderType=1 ORDER BY createDate DESC)
AS order1Id
, (SELECT TOP 1 orderId.url FROM orderData WHERE orderData.userId=userData.userId AND orderType=2 ORDER BY createDate DESC)
AS order2Id
FROM userData
) AS u
LEFT JOIN orderData o1 ON (u.order1Id=o1.orderId)
LEFT JOIN orderData o2 ON (u.order2Id=o2.orderId)
在SQL 2005中,您还可以使用RANK()OVER函数。 (但AFAIK完全是MSSQL特有的功能)
答案 4 :(得分:0)
他们最新的你是指当天的全新内容吗?如果createDate&gt; =当前日期,您可以随时查看您的createDate并获取所有用户和订单数据。
SELECT * FROM
"orderData", "userData"
WHERE
"userData"."userId" ="orderData"."userId"
AND "orderData".createDate >= current_date;
<强>已更新强>
以下是您在评论后想要的内容:
SELECT * FROM
"orderData", "userData"
WHERE
"userData"."userId" ="orderData"."userId"
AND "orderData".type = '1'
AND "orderData"."orderId" = (
SELECT "orderId" FROM "orderData"
WHERE
"orderType" = '1'
ORDER "orderId" DESC
LIMIT 1
)
答案 5 :(得分:0)
您可以为此进行联合查询。确切的语法需要一些工作,特别是逐个部分,但联盟应该能够做到。
例如:
SELECT orderId, orderType, createDate
FROM orderData
WHERE type=1 AND MAX(createDate)
GROUP BY orderId, orderType, createDate
UNION
SELECT orderId, orderType, createDate
FROM orderData
WHERE type=2 AND MAX(createDate)
GROUP BY orderId, orderType, createDate
答案 6 :(得分:0)
我在MySQL中使用这样的东西:
SELECT
u.*,
SUBSTRING_INDEX( MAX( CONCAT( o1.createDate, '##', o1.otherfield)), '##', -1) as o2_orderfield,
SUBSTRING_INDEX( MAX( CONCAT( o2.createDate, '##', o2.otherfield)), '##', -1) as o2_orderfield
FROM
userData as u
LEFT JOIN orderData AS o1 ON (o1.userId=u.userId AND o1.orderType=1)
LEFT JOIN orderData AS o2 ON (o1.userId=u.userId AND o2.orderType=2)
GROUP BY u.userId
简而言之,使用MAX()来获得最新的,通过将条件字段(createDate)添加到感兴趣的字段(otherfield)。 SUBSTRING_INDEX()然后删除日期。
OTOH,如果您需要任意数量的订单(如果userType可以是任何数字,而不是有限的ENUM);处理单独的查询会更好,如下所示:
select * from orderData where userId=XXX order by orderType, date desc group by orderType
为每个用户。
答案 7 :(得分:0)
假设orderId随时间单调增加:
SELECT *
FROM userData u
INNER JOIN orderData o
ON o.userId = u.userId
INNER JOIN ( -- This subquery gives the last order of each type for each customer
SELECT MAX(o2.orderId)
--, o2.userId -- optional - include if joining for a particular customer
--, o2.orderType -- optional - include if joining for a particular type
FROM orderData o2
GROUP BY o2.userId
,o2.orderType
) AS LastOrders
ON LastOrders.orderId = o.orderId -- expand join to include customer or type if desired
然后在客户端转动,或者如果使用SQL Server,则有一个PIVOT功能
答案 8 :(得分:0)
以下是将类型1和2数据移动到同一行的一种方法:
(通过将类型1和类型2信息放入它们自己的选择中,然后在from子句中使用。)
SELECT
a.name, ud1.*, ud2.*
FROM
userData a,
(SELECT user_id, orderid, orderType, reateDate, <etc>,
FROM orderData b
WHERE (userid, orderType, createDate) IN (
SELECT userid, orderType, max(createDate)
FROM orderData
WHERE orderType = 1
GROUP BY userid, orderType) ud1,
(SELECT user_id, orderid, orderType, createDate, <etc>,
FROM orderData
WHERE (userid, orderType, createDate) IN (
SELECT userid, orderType, max(createDate)
FROM orderData
WHERE orderType = 2
GROUP BY userid, orderType) ud2
答案 9 :(得分:0)
我是这样做的。这是标准SQL,适用于任何品牌的数据库。
SELECT u.userId, u.name, o1.orderId, o1.orderType, o1.createDate,
o2.orderId, o2.orderType, o2.createDate
FROM userData AS u
LEFT OUTER JOIN (
SELECT o1a.orderId, o1a.userId, o1a.orderType, o1a.createDate
FROM orderData AS o1a
LEFT OUTER JOIN orderData AS o1b ON (o1a.userId = o1b.userId
AND o1a.orderType = o1b.orderType AND o1a.createDate < o1b.createDate)
WHERE o1a.orderType = 1 AND o1b.orderId IS NULL) AS o1 ON (u.userId = o1.userId)
LEFT OUTER JOIN (
SELECT o2a.orderId, o2a.userId, o2a.orderType, o2a.createDate
FROM orderData AS o2a
LEFT OUTER JOIN orderData AS o2b ON (o2a.userId = o2b.userId
AND o2a.orderType = o2b.orderType AND o2a.createDate < o2b.createDate)
WHERE o2a.orderType = 2 AND o2b.orderId IS NULL) o2 ON (u.userId = o2.userId);
请注意,如果您有多个日期等于最新日期的类型的订单,您将在结果集中获得多行。如果您有两种类型的多个订单,您将在结果集中获得N x M行。所以我建议你在不同的查询中获取每种类型的行。
答案 10 :(得分:0)
以下是我最终使用的内容:
select ud.name,
order1.orderId,
order1.orderType,
order1.createDate,
order2.orderId,
order2.orderType,
order2.createDate
from userData ud
left join orderData order1
on order1.orderId = (select max(orderId)
from orderData od1
where od1.userId = ud.userId
and od1.orderType = '1')
left join orderData order2
on order2.orderId = (select max(orderId)
from orderData od2
where od2.userId = ud.userId
and od2.orderType = '2')
where ...[some limiting factors on the selection of users]...;