我正在使用defaultdict(int)来记录一组书中的单词出现次数。
当我得到内存异常时,Python正在消耗1.5 GB的内存:
File "C:\Python32\lib\collections.py", line 540, in update
_count_elements(self, iterable)
MemoryError
我的柜台大小超过8,000,000。
我至少要有20,000,000个独特单词。我该怎么做才能避免内存异常?
答案 0 :(得分:1)
即使您的64位系统存在大量内存,我也不认为使用dict
跟踪它们是一个可行的想法。你应该使用数据库。
/* If we added a key, we can safely resize. Otherwise just return!
* If fill >= 2/3 size, adjust size. Normally, this doubles or
* quaduples the size, but it's also possible for the dict to shrink
* (if ma_fill is much larger than ma_used, meaning a lot of dict
* keys have been * deleted).
*
* Quadrupling the size improves average dictionary sparseness
* (reducing collisions) at the cost of some memory and iteration
* speed (which loops over every possible entry). It also halves
* the number of expensive resize operations in a growing dictionary.
*
* Very large dictionaries (over 50K items) use doubling instead.
* This may help applications with severe memory constraints.
*/
if (!(mp->ma_used > n_used && mp->ma_fill*3 >= (mp->ma_mask+1)*2))
return 0;
return dictresize(mp, (mp->ma_used > 50000 ? 2 : 4) * mp->ma_used);
来自code,它表示如果插入太多项目,则必须增加dict - 不仅为包含的项目提供空间,而且还为新项目的插槽提供空间。它表示,如果超过2/3的字典被填满,则字典的大小将加倍(或少于50,000个项目的四倍)。我个人使用dicts来包含不到几十万个项目。即使只有不到一百万件物品,它也消耗了几千兆字节,几乎冻结了我的8GB win7机器。
如果你只是计算物品,你可以:
spilt the words in chunk
count the words in each chunk
update the database
使用合理的块大小,执行一些db查询(假设数据库访问将成为瓶颈)将会更好。(/ p>