背景:我正在尝试使用MATLAB的神经网络工具箱来预测未来的数据值。我从GUI运行它,但我还包括下面的输出代码。
问题:我的预测值滞后于实际值2个时间段,我不知道如何实际看到“t + 1”(预测)值。
代码:
% Solve an Autoregression Time-Series Problem with a NAR Neural Network
% Script generated by NTSTOOL
% Created Tue Mar 05 22:09:39 EST 2013
%
% This script assumes this variable is defined:
%
% close_data - feedback time series.
targetSeries = tonndata(close_data_short,false,false);
% Create a Nonlinear Autoregressive Network
feedbackDelays = 1:3;
hiddenLayerSize = 10;
net = narnet(feedbackDelays,hiddenLayerSize);
% Choose Feedback Pre/Post-Processing Functions
% Settings for feedback input are automatically applied to feedback output
% For a list of all processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer states.
% Using PREPARETS allows you to keep your original time series data unchanged, while
% easily customizing it for networks with differing numbers of delays, with
% open loop or closed loop feedback modes.
[inputs,inputStates,layerStates,targets] = preparets(net,{},{},targetSeries);
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'time'; % Divide up every value
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
% Choose a Training Function
% For a list of all training functions type: help nntrain
net.trainFcn = 'trainlm'; % Levenberg-Marquardt
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','plotresponse', ...
'ploterrcorr', 'plotinerrcorr'};
% Train the Network
[net,tr] = train(net,inputs,targets,inputStates,layerStates);
% Test the Network
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
% Recalculate Training, Validation and Test Performance
trainTargets = gmultiply(targets,tr.trainMask);
valTargets = gmultiply(targets,tr.valMask);
testTargets = gmultiply(targets,tr.testMask);
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotresponse(targets,outputs)
%figure, ploterrcorr(errors)
%figure, plotinerrcorr(inputs,errors)
% Closed Loop Network
% Use this network to do multi-step prediction.
% The function CLOSELOOP replaces the feedback input with a direct
% connection from the outout layer.
netc = closeloop(net);
[xc,xic,aic,tc] = preparets(netc,{},{},targetSeries);
yc = netc(xc,xic,aic);
perfc = perform(net,tc,yc)
% Early Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is given y(t+1).
% For some applications such as decision making, it would help to have predicted
% y(t+1) once y(t) is available, but before the actual y(t+1) occurs.
% The network can be made to return its output a timestep early by removing one delay
% so that its minimal tap delay is now 0 instead of 1. The new network returns the
% same outputs as the original network, but outputs are shifted left one timestep.
nets = removedelay(net);
[xs,xis,ais,ts] = preparets(nets,{},{},targetSeries);
ys = nets(xs,xis,ais);
closedLoopPerformance = perform(net,tc,yc)
提出的解决方案:我认为答案在于代码“早期预测网络”的最后部分。我只是不确定如何删除“一个延迟”。
其他问题:是否有可以从中输出的功能,所以我可以一遍又一遍地使用它?或者,一旦我获得下一段时间的数据,我是否只需要继续进行再培训?
答案 0 :(得分:1)
为确保此问题在答案已经存在的情况下不会保持打开状态,我会发布似乎可以解决问题的评论:
@DanielTheRocketMan的信用
我相信你应该分步工作:
- 查看数据是否静止
- 如果没有,请处理它(例如,区分数据)
- 测试最可能的模型,例如,ar model
- 尝试非线性模型,例如,nar
- 去找一个模特。
醇>
答案 1 :(得分:0)
尝试更简单的版本。我已经测试了这段代码,这段代码对我来说很好。
inputs = X; %define input and target
targets = y;
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
[net,tr] = train(net,inputs,targets);
outputss(x,:) = net(inputs);
errors = gsubtract(targets,outputss);
mse(errors)