Python中列表函数的成本

时间:2009-10-05 18:58:42

标签: python performance list

基于this older thread,看起来Python中列表函数的成本是:

  • 随机访问:O(1)
  • 在前面插入/删除:O(n)
  • 插入/删除:O(1)

任何人都可以确认在Python 2.6 / 3.x中是否仍然如此?

5 个答案:

答案 0 :(得分:30)

看看here。这是一个针对不同类型列表的PEP。指定的版本是2.6 / 3.0。

追加(插入到后面)是O(1),而插入(其他地方)是O(n)。所以,看起来仍然如此。

Operation...Complexity
Copy........O(n) 
Append......O(1)
Insert......O(n) 
Get Item....O(1)
Set Item....O(1)
Del Item....O(n) 
Iteration...O(n)
Get Slice...O(k)
Del Slice...O(n)
Set Slice...O(n+k)
Extend......O(k) 
Sort........O(n log n)
Multiply....O(nk)

答案 1 :(得分:7)

Python 3主要是一个渐进式的变化,数据结构及其复杂性没有大的变化。

Python集合的规范来源是Wiki上的TimeComplexity

答案 2 :(得分:4)

这是正确的,在前面插入会强制移动所有元素。

collections.deque提供了类似的功能,但针对双方插入进行了优化。

答案 3 :(得分:3)

我知道这篇文章很老,但我最近自己做了一点测试。 list.insert()的复杂性似乎是O(n)

Cost of Insertion. Ignore left plot

代码:

'''
Independent Study, Timing insertion list method in python
'''
import time

def make_list_of_size(n):
    ret_list = []
    for i in range(n):
        ret_list.append(n)
    return ret_list

#Estimate overhead of timing loop
def get_overhead(niters):
    '''
    Returns the time it takes to iterate a for loop niter times
    '''
    tic = time.time()
    for i in range(niters):
        pass #Just blindly iterate, niter times
    toc = time.time()
    overhead = toc-tic
    return overhead

def tictoc_midpoint_insertion(list_size_initial, list_size_final, niters,file):
    overhead = get_overhead(niters)
    list_size = list_size_initial
    #insertion_pt = list_size//2 #<------- INSERTION POINT ASSIGMNET LOCATION 1
    #insertion_pt = 0 #<--------------- INSERTION POINT ASSIGNMENT LOCATION 4 (insert at beginning)
    delta = 100
    while list_size <= list_size_final:
        #insertion_pt = list_size//2 #<----------- INSERTION POINT ASSIGNMENT LOCATION 2
        x = make_list_of_size(list_size)
        tic = time.time()
        for i in range(niters):
            insertion_pt = len(x)//2 #<------------- INSERTION POINT ASSIGNMENT LOCATION 3
            #insertion_pt = len(x) #<------------- INSERTION POINT ASSIGN LOC 5 insert at true end
            x.insert(insertion_pt,0)
        toc = time.time()
        cost_per_iter = (toc-tic)/niters #overall time cost per iteration
        cost_per_iter_no_overhead = (toc - tic - overhead)/niters #the fraction of time/iteration, #without overhead cost of pure iteration                                              
        print("list size = {:d}, cost without overhead = {:f} sec/iter".format(list_size,cost_per_iter_no_overhead))
        file.write(str(list_size)+','+str(cost_per_iter_no_overhead)+'\n')
        if list_size >= 10*delta:
            delta *= 10
        list_size += delta

def main():
    fname = input()
    file = open(fname,'w')
    niters = 10000
    tictoc_midpoint_insertion(100,10000000,niters,file)
    file.close()

main()

查看可以进行插入的5个位置。成本当然取决于列表的大小,以及与列表开头的距离(即必须重新组织多少个内存位置)

忽略情节的左图

答案 4 :(得分:2)

Fwiw,如果你需要,有一个更快的(对于某些操作...插入是O(log n))list implementation称为BList。 BList