我一直在使用“nlme”包中的R Orthodont数据集。只需使用install.packages("nlme");library(nlme);head(Orthodont)
来查看。该数据集包括在27名儿童中随时间测量的垂体和翼状颌裂之间的距离。
使用lme4包我可以使用逻辑曲线作为我的函数形式拟合非线性混合效应模型。我可以选择将渐近线和中点作为随机效果输入
nm1 <- nlmer(distance ~ SSlogis(age,Asym, xmid, scal) ~ (Asym | Subject) + (xmid | Subject), Orthodont, start = c(Asym =25,xmid = 11, scal = 3), corr = FALSE,verb=1)
我真正想知道的是性别是否会改变这些参数。不幸的是,在线示例不包括主题和组示例。这是否可以使用lme4包装?
答案 0 :(得分:18)
我相信通过创建自定义模型公式及其渐变的功能,可以做到这一点。标准 SSlogis 函数使用以下格式的逻辑函数:
f(input) = Asym/(1+exp((xmid-input)/scal)) # as in ?SSlogis
您可以修改上述语句以满足您的需要,而不是调用 SSlogis 。我相信你会希望看到性别对固定效应是否有影响。以下是在 Asym2 中修改性别特定 Asym 子群体效果的示例代码:
# Just for loading the data, we will use lme4 for model fitting, not nlme
library(nlme)
library(lme4)
# Careful when loading both nlme and lme4 as they have overlap, strange behaviour may occur
# A more generalized form could be taken e.g. from http://en.wikipedia.org/wiki/Generalised_logistic_curve
# A custom model structure:
Model <- function(age, Asym, Asym2, xmid, scal, Gender)
{
# Taken from ?SSlogis, standard form:
#Asym/(1+exp((xmid-input)/scal))
# Add gender-specific term to Asym2
(Asym+Asym2*Gender)/(1+exp((xmid-age)/scal))
# Evaluation of above form is returned by this function
}
# Model gradient, notice that we include all
# estimated fixed effects like 'Asym', 'Asym2', 'xmid' and 'scal' here,
# but not covariates from the data: 'age' and 'Gender'
ModelGradient <- deriv(
body(Model)[[2]],
namevec = c("Asym", "Asym2", "xmid", "scal"),
function.arg=Model
)
引入性别效应的一种典型方式是使用二进制编码。我会将 Sex -variable转换为二进制编码 Gender :
# Binary coding for the gender
Orthodont2 <- data.frame(Orthodont, Gender = as.numeric(Orthodont[,"Sex"])-1)
#> table(Orthodont2[,"Gender"])
# 0 1
#64 44
# Ordering data based on factor levels so they don't mix up paneling in lattice later on
Orthodont2 <- Orthodont2[order(Orthodont2[,"Subject"]),]
然后我可以适应自定义模型:
# Fit the non-linear mixed effects model
fit <- nlmer(
# Response
distance ~
# Fixed effects
ModelGradient(age = age, Asym, Asym2, xmid, scal, Gender = Gender) ~
# replaces: SSlogis(age,Asym, xmid, scal) ~
# Random effects
(Asym | Subject) + (xmid | Subject),
# Data
data = Orthodont2,
start = c(Asym = 25, Asym2 = 15, xmid = 11, scal = 3))
当 Gender == 0 (男性)时,模型会达到以下值:
(Asym+Asym2*0)/(1+exp((xmid-age)/scal)) = (Asym)/(1+exp((xmid-age)/scal))
实际上是标准的SSlogis函数形式。但是,现在有二进制开关,如果性别== 1 (女性):
(Asym+Asym2)/(1+exp((xmid-age)/scal))
因此,随着年龄的增长,我们实现的渐近水平实际上是 Asym + Asym2 ,而不仅仅是女性个体的 Asym 。
另请注意,我没有为 Asym2 指定新的随机效果。由于 Asym 对性别无特异性,因此 Asym -term,女性个体的个体渐近水平也会有差异。模型拟合:
> summary(fit)
Nonlinear mixed model fit by the Laplace approximation
Formula: distance ~ ModelGradient(age = age, Asym, Asym2, xmid, scal, Gender = Gender) ~ (Asym | Subject) + (xmid | Subject)
Data: Orthodont2
AIC BIC logLik deviance
268.7 287.5 -127.4 254.7
Random effects:
Groups Name Variance Std.Dev.
Subject Asym 7.0499 2.6552
Subject xmid 4.4285 2.1044
Residual 1.5354 1.2391
Number of obs: 108, groups: Subject, 27
Fixed effects:
Estimate Std. Error t value
Asym 29.882 1.947 15.350
Asym2 -3.493 1.222 -2.859
xmid 1.240 1.068 1.161
scal 5.532 1.782 3.104
Correlation of Fixed Effects:
Asym Asym2 xmid
Asym2 -0.471
xmid -0.584 0.167
scal 0.901 -0.239 -0.773
看起来可能存在针对性别的特定效应(t -2.859),因此随着“年龄”增加,女性患者的“距离”值似乎更低:29.882 - 3.493 = 26.389
我不一定建议这是一个好/最好的模型,只是展示如何继续自定义 lme4 中的非线性模型。如果要提取非线性固定效果(与How do I extract lmer fixed effects by observation?中线性模型的可视化方式类似),模型的可视化需要一些修改:
# Extracting fixed effects components by calling the model function, a bit messy but it works
# I like to do this for visualizing the model fit
fixefmat <- matrix(rep(fixef(fit), times=dim(Orthodont2)[1]), ncol=length(fixef(fit)), byrow=TRUE)
colnames(fixefmat) <- names(fixef(fit))
Orthtemp <- data.frame(fixefmat, Orthodont2)
attach(Orthtemp)
# see str(Orthtemp)
# Evaluate the function for rows of the attached data.frame to extract fixed effects corresponding to observations
fix = as.vector(as.formula(body(Model)[[2]]))
detach(Orthtemp)
nobs <- 4 # 4 observations per subject
legend = list(text=list(c("y", "Xb + Zu", "Xb")), lines = list(col=c("blue", "red", "black"), pch=c(1,1,1), lwd=c(1,1,1), type=c("b","b","b")))
require(lattice)
xyplot(
distance ~ age | Subject,
data = Orthodont2,
panel = function(x, y, ...){
panel.points(x, y, type='b', col='blue')
panel.points(x, fix[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='black')
panel.points(x, fitted(fit)[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='red')
},
key = legend
)
# Residuals
plot(Orthodont2[,"distance"], resid(fit), xlab="y", ylab="e")
# Distribution of random effects
par(mfrow=c(1,2))
hist(ranef(fit)[[1]][,1], xlab="Random 'Asym'", main="")
hist(ranef(fit)[[1]][,2], xlab="Random 'xmid'", main="")
# Random 'xmid' seems a bit skewed to the right and may violate normal distribution assumption
# This is due to M13 having a bit abnormal growth curve (random effects):
# Asym xmid
#M13 3.07301310 3.9077583
图形输出:
请注意,在上图中,女性(F ##)个体略低于男性(M ##)个体(黑色线条)。例如。 M10 - &lt; - &gt;中间区域面板的F10差异。
用于观察指定模型的某些特征的残差和随机效应。个人M13似乎有点棘手。