我有一个(大)解析句子列表(使用斯坦福解析器解析),例如,句子“现在你可以被娱乐”有以下树:
(ROOT
(S
(ADVP (RB Now))
(, ,)
(NP (PRP you))
(VP (MD can)
(VP (VB be)
(VP (VBN entertained))))
(. .)))
我正在使用句子树集来使用nltk:
来引导语法import nltk
# ... for each sentence tree t, add its production to allProductions
allProductions += t.productions()
# Induce the grammar
S = nltk.Nonterminal('S')
grammar = nltk.induce_pcfg(S, allProductions)
现在我想用grammar
生成新的随机句子。我的希望是,由于语法是从一组特定的输入示例中学习的,因此生成的句子在语义上是相似的。我可以在nltk中这样做吗?
如果我不能使用nltk执行此操作,是否存在可以采用(可能重新格式化)grammar
并生成句子的任何其他工具?
答案 0 :(得分:13)
在NLTK 2.0中,您可以使用nltk.parse.generate
生成所有可能的sentences for a given grammar。
此代码定义了一个函数,该函数应根据(P)CFG中的生产规则生成单个句子。
# This example uses choice to choose from possible expansions
from random import choice
# This function is based on _generate_all() in nltk.parse.generate
# It therefore assumes the same import environment otherwise.
def generate_sample(grammar, items=["S"]):
frags = []
if len(items) == 1:
if isinstance(items[0], Nonterminal):
for prod in grammar.productions(lhs=items[0]):
frags.append(generate_sample(grammar, prod.rhs()))
else:
frags.append(items[0])
else:
# This is where we need to make our changes
chosen_expansion = choice(items)
frags.append(generate_sample,chosen_expansion)
return frags
要在PCFG中使用权重,您显然希望使用比choice()
更好的采样方法,这隐含地假设当前节点的所有扩展都是等概率的。
答案 1 :(得分:4)
首先,如果你生成随机句子,它们可能在语义上是正确的,但它们可能会失去意义。
(听起来有点像麻省理工学院的学生用SCIgen program做的自动生成科学论文。非常有趣btw。)
无论如何,我自己从来没有这样做,但似乎有可能使用nltk.bigrams,您可以在使用Bigrams生成随机文本下have a look there。
你也可以generate all subtrees of a current tree,我不确定它是否是你想要的。
答案 2 :(得分:2)
使用nltk Text对象,您可以在其上调用“generate()”,这将“打印使用trigram语言模型生成的随机文本。”http://nltk.org/_modules/nltk/text.html
答案 3 :(得分:2)
我从现有的nltk.CFG语法生成随机句子的解决方案:
def generate_sample(grammar, prod, frags):
if prod in grammar._lhs_index: # Derivation
derivations = grammar._lhs_index[prod]
derivation = random.choice(derivations)
for d in derivation._rhs:
generate_sample(grammar, d, frags)
elif prod in grammar._rhs_index:
# terminal
frags.append(str(prod))
现在可以使用它:
frags = []
generate_sample(grammar, grammar.start(), frags)
print( ' '.join(frags) )
答案 4 :(得分:0)
受上述启发,这是一种使用迭代而不是递归的方法。
import random
def rewrite_at(index, replacements, the_list):
del the_list[index]
the_list[index:index] = replacements
def generate_sentence(grammar):
sentence_list = [grammar.start()]
all_terminals = False
while not all_terminals:
all_terminals = True
for position, symbol in enumerate(sentence_list):
if symbol in grammar._lhs_index:
all_terminals = False
derivations = grammar._lhs_index[symbol]
derivation = random.choice(derivations) # or weighted_choice(derivations) if you have a function for that
rewrite_at(position, derivation.rhs(), sentence_list)
return sentence_list
或者,如果您想要派生树,则为一。
from nltk.tree import Tree
def tree_from_production(production):
return Tree(production.lhs(), production.rhs())
def leaf_positions(the_tree):
return [the_tree.leaf_treeposition(i) for i in range(len(the_tree.leaves()))]
def generate_tree(grammar):
initial_derivations = grammar._lhs_index[grammar.start()]
initial_derivation = random.choice(initial_derivations) # or weighed_choice if you have that function
running_tree = tree_from_production(initial_derivation)
all_terminals = False
while not all_terminals:
all_terminals = True
for position in leaf_positions(running_tree):
node_label = running_tree[position]
if node_label in grammar._lhs_index:
all_terminals = False
derivations = grammar._lhs_index[node_label]
derivation = random.choice(derivations) # or weighed_choice if you have that function
running_tree[position] = tree_from_production(derivation)
return running_tree
以下是用于上述的NLTK PCFG生产规则的weighted_choice函数,该函数改编自Ned Batchelder对here的一般加权选择函数的回答:
def weighted_choice(productions):
prods_with_probs = [(prod, prod.prob()) for prod in productions]
total = sum(prob for prod, prob in prods_with_probs)
r = random.uniform(0, total)
upto = 0
for prod, prob in prods_with_probs:
if upto + prob >= r:
return prod
upto += prob
assert False, "Shouldn't get here"