我正在使用SFML开发C ++和OpenGL 3.2的3D游戏。我一直在努力实现点光影映射。到目前为止我所做的似乎符合我所学到的和我见过的例子,但仍然没有阴影。
我所做的是按照我使用它的确切顺序编写一个简单的所有代码列表,但不是完整的源代码,只有相关的代码(因为我的项目分为几个类):
Omnidirectional shadow mapping
C++
- Initialization
-- Use shadow pass shader program
-- Generate + bind the shadow frame buffer
glGenFramebuffers(1, &shadowFrameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, shadowFrameBuffer);
-- Generate a texture
glGenTextures(1, &shadowMap);
-- Bind texture as cubemap
glBindTexture(GL_TEXTURE_CUBE_MAP);
-- Set texture parameters
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
-- Generate empty 1024 x 1024 for every face of the cube
for (int face = 0; face < 6; face++)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_DEPTH_COMPONENT32F , 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
-- Attach the cubemap to the framebuffer
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, shadowMap, 0);
-- Only draw depth to framebuffer
glDrawBuffer(GL_NONE);
- Every frame
-- Clear screen
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-- Render shadow map
--- Bind shadow frame buffer
glBindFramebuffer(GL_FRAMEBUFFER, shadowFrameBuffer);
--- Set the viewport to the size of the shadow map
glViewport(0, 0, 1024, 1024);
-- Cull front faces
glCullFace(GL_FRONT);
-- Use shadow mapping program
--- Define projection matrix for rendering each face
glm::mat4 depthProjectionMatrix = glm::perspective(90.0f, 1.0f, 1.0f, 10.0f);
--- Define view matrices for all six faces
std::vector<glm::mat4> depthViewMatrices;
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(1,0,0), glm::vec3(0,-1,0) )); // +X
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(-1,0,0), glm::vec3(0,1,0) )); // -X
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(0,1,0), glm::vec3(0,0,1) )); // +Y
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(0,-1,0), glm::vec3(0,0,-1) )); // -Y
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(0,0,1), glm::vec3(0,-1,0) )); // +Z
depthViewMatrices.push_back(glm::lookAt(lightInvDir, glm::vec3(0,0,-1), glm::vec3(0,1,0) )); // -Z
--- For every object in the scene
---- Bind the VBO of the object
---- Define the model matrix for the object based on its position and orientation
---- For all six sides of the cube
----- Set the correct side to render to
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, shadowMap, 0);
----- Clear depth buffer
glClear(GL_DEPTH_BUFFER_BIT);
----- Send model, view and projection matrices to shadow mapping shader
glUniformMatrix4fv(glGetUniformLocation(shadowMapper, "lightModelMatrix"), 1, GL_FALSE, glm::value_ptr(depthModelMatrix));
glUniformMatrix4fv(glGetUniformLocation(shadowMapper, "lightViewMatrix"), 1, GL_FALSE, glm::value_ptr(depthViewMatrices[i]));
glUniformMatrix4fv(glGetUniformLocation(shadowMapper, "lightProjectionMatrix"), 1, GL_FALSE, glm::value_ptr(depthProjectionMatrix));
----- Draw the object
glDrawElements(....);
- END SHADOW MAP DRAW
-- Cull back faces
glCullFace(GL_BACK);
-- Use standard shader program
-- Bind default framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);
-- Activate cubemap texture
glActiveTexture(GL_TEXTURE1);
-- Bind cubemap texture
glBindTexture(GL_TEXTURE_CUBE_MAP, shadowMap);
-- Tell shader to use first texture
glUniform1i(glGetUniformLocation(currentProgram->id, "shadowmap"), 1);
-- Send standard MVPs and draw objects
glDrawElements(...);
- END C++
=================================
GLSL
shadowpass vertex shader source
#version 150
in vec3 position;
out vec3 worldPosition;
uniform mat4 lightModelMatrix;
uniform mat4 lightViewMatrix;
uniform mat4 lightProjectionMatrix;
void main()
{
gl_Position = lightProjectionMatrix * lightViewMatrix * lightModelMatrix * vec4(position, 1.0);
worldPosition = (lightModelMatrix * vec4(position, 1.0)).xyz; // Send world position of vertex to fragment shader
}
shadowpass fragment shader source
#version 150
in vec3 worldPosition; // Vertex position in world space
out float distance; // Distance from vertex position to light position
vec3 lightWorldPosition = vec3(0.0, 0.0, 0.0); // Light position in world space
void main()
{
distance = length(worldPosition - lightWorldPosition); // Distance from point to light
// Distance will be written to the cubemap
}
standard vertex shader source
#version 150
in vec3 position;
in vec3 normal;
in vec2 texcoord;
uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
out vec3 fragnormal;
out vec3 fragnormaldirection;
out vec2 fragtexcoord;
out vec4 fragposition;
out vec4 fragshadowcoord;
void main()
{
fragposition = vec4(position, 1.0); // Position of vertex in object space
fragtexcoord = texcoord;
fragnormaldirection = normalize(modelInverseTranspose * normal);
fragnormal = normalize(normal);
gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(position, 1.0);
}
standard fragment shader source
#version 150
out vec4 outColour;
in vec3 fragnormaldirection;
in vec2 fragtexcoord;
in vec3 fragnormal;
in vec4 fragposition;
uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
uniform mat4 viewMatrixInversed;
uniform sampler2D tex;
uniform samplerCube shadowmap;
void main()
{
vec3 lightpos = vec3(0.0, 0.0, 0.0);
vec3 pointToLight = (fragposition * modelMatrix).xyz - lightpos; // Get vector between this point and the light
float dist = texture(shadowmap, pointToLight).x; // Get distance written in texture
float shadowfactor = 1.0;
if (length(pointToLight) > dist) // Is it occluded?
shadowfactor = 0.5;
outColour = texture(tex, fragtexcoord) * shadowfactor;
}
以下是我的代码现在所做的图片:
这是一种奇怪的效果,但似乎接近我的意思。似乎暴露在0,0,0光的任何表面在其中心都有一个没有阴影的圆圈,而其他一切都没有被遮盖。
答案 0 :(得分:4)
调试阴影贴图的一种非常有用的方法确实有一种方法可以将阴影贴图的内容显示为屏幕上的四边形。在立方体阴影贴图的情况下有6个四边形。这可以作为一个调试复活节彩蛋实现,你可以在整个屏幕上显示完整的纹理,然后转到下一个面孔&#39;所以你可以用另一个关键组合打滑6个面孔。
然后,立方阴影贴图中最重要的事情之一是深度范围。点光源不具有无限范围,因此通常您希望缩放深度存储以匹配光照范围。
您可以使用浮点16位亮度(或红色通道)纹理来存储世界深度(球形,意味着使用像素着色器中的一点计算的真实长度(光线到交叉点)) 或者您可以使用线性深度(与经典ZBuffer中存储的相同类型,即标准化设备坐标的深度。这是投影矩阵之后的深度。在这种情况下,在照明中重建一次世界位置着色器(下一遍),问题是在乘以相机 - 立方体 - 面反转*投影后,一定要除以w。
调试阴影贴图的关键是整个着色器。首先使用颜色来虚拟化阴影贴图中存储的深度,就像您的世界像素所感知的那样。这是在我公司的引擎中帮助修复点阴影贴图的唯一方法。您可以使用混合和夹子组合制作颜色代码,如蓝色0到0.3,红色从0.3到0.6,绿色从0.6到1.如果你有世界距离存储它更容易,但仍然有趣通过它来通过它颜色代码。只需使用相同的功能,但将距离除以预期的世界范围。
使用该vizu方案,您将能够立即看到阴影区域,因为它们都具有相同的颜色(因为它被更近的表面拦截了“射线”)。一旦你到达那一点;其余的一切都会顺利进行。
祝你好运:)