我有一个简单的问题,我用for循环无法解决。 我每次在for循环中计算并保存列的平均值。
在第一个循环中,均值保存到变量中。但在第二个循环中,column2的平均值将替换column1的平均值。这是一个非常基本的问题,但我不知道该怎么做。
#read.table(file1)
for (x in 1:100){
f <- mean(file1[,x])
}
我想保存1个变量中所有列的平均值(假设它被称为“f”)。
f <- c(meancol1, meancol2, meancol3... meancol100)
有什么想法吗?
答案 0 :(得分:2)
更简单的是,您可以使用colMeans
功能。这是一个例子
> set.seed(001) # Generating some random data
> file1 <- data.frame(matrix(rnorm(50, 100, 5), ncol=5))
> file1 # this is how the artificial data.frame should look like
X1 X2 X3 X4 X5
1 96.86773 107.55891 104.59489 106.79340 99.17738
2 100.91822 101.94922 103.91068 99.48606 98.73319
3 95.82186 96.89380 100.37282 101.93836 103.48482
4 107.97640 88.92650 90.05324 99.73097 102.78332
5 101.64754 105.62465 103.09913 93.11470 96.55622
6 95.89766 99.77533 99.71936 97.92503 96.46252
7 102.43715 99.91905 99.22102 98.02855 101.82291
8 103.69162 104.71918 92.64624 99.70343 103.84266
9 102.87891 104.10611 97.60925 105.50013 99.43827
10 98.47306 102.96951 102.08971 103.81588 104.40554
> colMeans(file1) # this part computes the means for each column without a 'for' loop
X1 X2 X3 X4 X5
100.66101 101.24422 99.33163 100.60365 100.67068
查看?colMeans
如果您有非数字列,则可以使用sapply
内的colMeans
自动跳过它们,例如:
set.seed(001) # Generating some random data
file1 <- data.frame(matrix(rnorm(50, 100, 5), ncol=5))
# Creating three columns with non-numeric data
factors <- data.frame(matrix(sample(letters, 30, TRUE), ncol=3))
file1 <- cbind(factors, file1) # this is your data.frame
colnames(file1) <- paste0('Col.', 1:ncol(file1)) # set some colnames
file1 # this is the data.frame to work with
> colMeans(file1[sapply(file1, is.numeric)])# colmeans for only those numeric cols
Col.4 Col.5 Col.6 Col.7 Col.8
100.65027 101.52467 102.04486 99.14944 100.23847
答案 1 :(得分:0)
你不需要循环。
f<-apply(file1,2,mean)