我想知道是否有任何方法可以简化以下代码。正如您所看到的,使用了许多dicts以及条件语句来清除错误的输入数据。请注意,行程速率值尚未全部输入,现在只需复制和粘贴dicts
修改
在任何比率中,(x,y):z。 x和y是正确的,z值不是因为它们只是复制/粘贴
此代码可用于复制,粘贴和测试
import math
# step 1.4 return trip rates
def trip_rates( population_stratification, analysis_type, low_income, medium_income, high_income ):
''' this function returns the proper trip rate tuple to be used based on input
data
ADPT = Average Daily Person Trips per Household
pph = person per household
veh_hh = vehicles per household
(param_1, param_2): ADPT
'''
li = low_income
mi = medium_income
hi = high_income
# table 5 -
if analysis_type == 1:
if population_stratification == 1:
rates = {( li, 1 ):3.6, ( li, 2 ):6.5, ( li, 3 ):9.1, ( li, 4 ):11.5, ( li, 5 ): 13.8,
( mi, 1 ):3.9, ( mi, 2 ):7.3, ( mi, 3 ):10.0, ( mi, 4 ):13.1, ( mi, 5 ): 15.9,
( hi, 1 ):4.5, ( mi, 2 ):9.2, ( mi, 3 ):12.2, ( mi, 4 ):14.8, ( mi, 5 ): 18.2}
return rates
if population_stratification == 2:
rates = {
( li, 1 ):3.1, ( li, 2 ):6.3, ( li, 3 ):9.4, ( li, 4 ):12.5, ( li, 5 ): 14.7,
( mi, 1 ):4.8, ( mi, 2 ):7.2, ( mi, 3 ):10.1, ( mi, 4 ):13.3, ( mi, 5 ): 15.5,
( hi, 1 ):4.9, ( mi, 2 ):7.7, ( mi, 3 ):12.5, ( mi, 4 ):13.8, ( mi, 5 ): 16.7
}
return rates
if population_stratification == 3: #TODO: input actual rate
rates = {
( li, 1 ):3.6, ( li, 2 ):6.5, ( li, 3 ):9.1, ( li, 4 ):11.5, ( li, 5 ): 13.8,
( mi, 1 ):3.9, ( mi, 2 ):7.3, ( mi, 3 ):10.0, ( mi, 4 ):13.1, ( mi, 5 ): 15.9,
( hi, 1 ):4.5, ( mi, 2 ):9.2, ( mi, 3 ):12.2, ( mi, 4 ):14.8, ( mi, 5 ): 18.2
}
return rates
if population_stratification == 4: #TODO: input actual rate
rates = {
( li, 1 ):3.1, ( li, 2 ):6.3, ( li, 3 ):9.4, ( li, 4 ):12.5, ( li, 5 ): 14.7,
( mi, 1 ):4.8, ( mi, 2 ):7.2, ( mi, 3 ):10.1, ( mi, 4 ):13.3, ( mi, 5 ): 15.5,
( hi, 1 ):4.9, ( mi, 2 ):7.7, ( mi, 3 ):12.5, ( mi, 4 ):13.8, ( mi, 5 ): 16.7
}
return rates
#table 6
elif analysis_type == 2:
if population_stratification == 1: #TODO: Change rates
rates = {
( 0, 1 ):3.6, ( 0, 2 ):6.5, ( 0, 3 ):9.1, ( 0, 4 ):11.5, ( 0, 5 ): 13.8,
( 1, 1 ):3.9, ( 1, 2 ):7.3, ( 1, 3 ):10.0, ( 1, 4 ):13.1, ( 1, 5 ): 15.9,
( 2, 1 ):4.5, ( 2, 2 ):9.2, ( 2, 3 ):12.2, ( 2, 4 ):14.8, ( 2, 5 ): 18.2,
( 3, 1 ):4.5, ( 3, 2 ):9.2, ( 3, 3 ):12.2, ( 3, 4 ):14.8, ( 3, 5 ): 18.2
}
return rates
if population_stratification == 2: #TODO: Change rates
rates = {
( 0, 1 ):3.6, ( 0, 2 ):6.5, ( 0, 3 ):9.1, ( 0, 4 ):11.5, ( 0, 5 ): 13.8,
( 1, 1 ):3.9, ( 1, 2 ):7.3, ( 1, 3 ):10.0, ( 1, 4 ):13.1, ( 1, 5 ): 15.9,
( 2, 1 ):4.5, ( 2, 2 ):9.2, ( 2, 3 ):12.2, ( 2, 4 ):14.8, ( 2, 5 ): 18.2,
( 3, 1 ):4.5, ( 3, 2 ):9.2, ( 3, 3 ):12.2, ( 3, 4 ):14.8, ( 3, 5 ): 18.2
}
return rates
if population_stratification == 3: #TODO: Change rates
rates = {
( 0, 1 ):3.6, ( 0, 2 ):6.5, ( 0, 3 ):9.1, ( 0, 4 ):11.5, ( 0, 5 ): 13.8,
( 1, 1 ):3.9, ( 1, 2 ):7.3, ( 1, 3 ):10.0, ( 1, 4 ):13.1, ( 1, 5 ): 15.9,
( 2, 1 ):4.5, ( 2, 2 ):9.2, ( 2, 3 ):12.2, ( 2, 4 ):14.8, ( 2, 5 ): 18.2,
( 3, 1 ):4.5, ( 3, 2 ):9.2, ( 3, 3 ):12.2, ( 3, 4 ):14.8, ( 3, 5 ): 18.2
}
return rates
if population_stratification == 4: #TODO: Change rates
rates = {
( 0, 1 ):3.6, ( 0, 2 ):6.5, ( 0, 3 ):9.1, ( 0, 4 ):11.5, ( 0, 5 ): 13.8,
( 1, 1 ):3.9, ( 1, 2 ):7.3, ( 1, 3 ):10.0, ( 1, 4 ):13.1, ( 1, 5 ): 15.9,
( 2, 1 ):4.5, ( 2, 2 ):9.2, ( 2, 3 ):12.2, ( 2, 4 ):14.8, ( 2, 5 ): 18.2,
( 3, 1 ):4.5, ( 3, 2 ):9.2, ( 3, 3 ):12.2, ( 3, 4 ):14.8, ( 3, 5 ): 18.2
}
return rates
# table 7
elif analysis_type == 3:
if population_stratification == 1: #TODO: input actual rate
rates = {
( li, 0 ):3.6, ( li, 1 ):6.5, ( li, 2 ):9.1, ( li, 3 ):11.5,
( mi, 0 ):3.9, ( mi, 1 ):7.3, ( mi, 2 ):10.0, ( mi, 3 ):13.1,
( hi, 0 ):4.5, ( mi, 1 ):9.2, ( mi, 2 ):12.2, ( mi, 3 ):14.8
}
return rates
if population_stratification == 2: #TODO: input actual rate
rates = {
( li, 0 ):3.6, ( li, 1 ):6.5, ( li, 2 ):9.1, ( li, 3 ):11.5,
( mi, 0 ):3.9, ( mi, 1 ):7.3, ( mi, 2 ):10.0, ( mi, 3 ):13.1,
( hi, 0 ):4.5, ( mi, 1 ):9.2, ( mi, 2 ):12.2, ( mi, 3 ):14.8
}
return rates
if population_stratification == 3: #TODO: input actual rate
rates = {
( li, 0 ):3.6, ( li, 1 ):6.5, ( li, 2 ):9.1, ( li, 3 ):11.5,
( mi, 0 ):3.9, ( mi, 1 ):7.3, ( mi, 2 ):10.0, ( mi, 3 ):13.1,
( hi, 0 ):4.5, ( mi, 1 ):9.2, ( mi, 2 ):12.2, ( mi, 3 ):14.8
}
return rates
if population_stratification == 4: #TODO: input actual rate
rates = {
( li, 0 ):3.6, ( li, 1 ):6.5, ( li, 2 ):9.1, ( li, 3 ):11.5,
( mi, 0 ):3.9, ( mi, 1 ):7.3, ( mi, 2 ):10.0, ( mi, 3 ):13.1,
( hi, 0 ):4.5, ( mi, 1 ):9.2, ( mi, 2 ):12.2, ( mi, 3 ):14.8
}
return rates
def interpolate( population_stratification, analysis_type, low_income, medium_income, high_income, x, y ):
#get rates dict
rates = trip_rates( population_stratification, analysis_type, low_income, medium_income, high_income )
# dealing with x parameters
#when using income levels, x_1 and x_2 are li, mi, or hi
if analysis_type == 1 or analysis_type == 2 or analsis_type == 4:
if x < high_income and x >= medium_income:
x_1 = medium_income
x_2 = high_income
elif x < medium_income:
x_1 = low_income
x_2 = medium_income
else:
x_1 = high_income
x_2 = high_income
if analysis_type == 3:
if x >= 3:
x_1 = 3
x_2 = 3
else:
x_1 = int( math.floor( x ) )
x_2 = int( math.ceil( x ) )
# dealing with y parametrs
#when using persons per household, max number y = 5
if analysis_type == 1 or analysis_type == 4:
if y >= 5:
y_1 = 5
y_2 = 5
else:
y_1 = int( math.floor( y ) )
y_2 = int( math.ceil( y ) )
elif analysis_type == 2 or analysis_type == 3:
if y >= 5:
y_1 = 5
y_2 = 5
else:
y_1 = int( math.floor( y ) )
y_2 = int( math.ceil( y ) )
# denominator
z = ( ( x_2 - x_1 ) * ( y_2 - y_1 ) )
result = ( ( ( rates[( x_1, y_1 )] ) * ( ( x_2 - x ) * ( y_2 - y ) ) / ( z ) ) +
( ( rates[( x_2, y_1 )] ) * ( ( x - x_1 ) * ( y_2 - y ) ) / ( z ) ) +
( ( rates[( x_1, y_2 )] ) * ( ( x_2 - x ) * ( y - y_1 ) ) / ( z ) ) +
( ( rates[( x_2, y_2 )] ) * ( ( x - x_1 ) * ( y - y_1 ) ) / ( z ) ) )
return result
#test
low_income = 20000 #this is calculated using exchange rates
medium_income = 40000 # this is calculated using exchange rates
high_income = 60000 # this is calculated using exchange rates
population_stratification = 1 #inputed by user
analysis_type = 1 #inputed by user
x = 35234.34 #test income
y = 3.5 # test pph
print interpolate( population_stratification, analysis_type, low_income, medium_income, high_income, x, y )
答案 0 :(得分:5)
那里有很多数据,似乎代码和数据相互混合。
数据和代码应该是分开的。数据是外部源,您可以修改或读入。您可以调整代码以快速将数据从良好的可编辑表示解析为对算法有用的表示。我怀疑你的代码会更短,更清晰,更不容易出错(你注意到所有'费率'词典都有多个键,你错过了很多'hi'键吗?)。
如果您需要更好的抽象,例如矩阵和数据数组,请查看numpy
编辑1
您是否计算了尺寸数量?这里有一个具有X维度的多维矩阵: analysis_type,population_stratification,income_level,index
如果我看到这是一个3x4x3x3(= 108个条目)“矩阵”或“查找表”。如果这是您的模型构建的数据,那很好。但是你不能把这些数字放在你读过的文件或表格中吗?你的代码将是微不足道的。
编辑2
好的,我会咬一些小的python风格:测试Set或Range中的值。
而不是:
if analysis_type == 1 or analysis_type == 2 or analsis_type == 4:
你可以使用
if analysis_type in (1, 2, 4):
或者甚至使用可读名称作为(CUBIC,..)。
而不是:
if x < high_income and x >= medium_income:
你可以使用链式条件; Python是为数不多的编程语言之一,其中条件链表达式为中性if语句:
if medium_income <= x < high_income:
编辑3
比小代码数字更重要的当然是代码设计和重构。编辑2只能给你一些润色。
你应该学会厌恶重复的代码。
另外,你在一个函数中有很多分支。这是一个好的迹象,你应该把它分解成多个功能。它还可以减少重复。例如,当一个变量如analysis_type
可以完全改变函数的作用时,为什么在一个函数中有两个不同的行为?你不应该把整个程序放在一个函数中。也许analysis_type == 3更好地用自己的函数表示(例如)?
你是否理解你的函数trip_rates
基本上是一个数组查找,其中数组查找是硬编码的,好像..:return .. if:return ..,并且数组在功能?如果trip_rates
可以像这样实施怎么办?会不可能?
data_model = compute_table(low_income, ...)
return data_model[analysis_type][population_stratification]
答案 1 :(得分:2)
对于kaizer关于数据和代码的建议,这里有一些简单的清理:
代码
if y >= 5:
y_1 = 5
y_2 = 5
else:
y_1 = int( math.floor( y ) )
y_2 = int( math.ceil( y ) )
可以写成
min(5, int(math.floor(y))
或
int(math.floor(min(5, y))
甚至做了一个功能:
def limitedInt(v, maxV):
return min(5, int(math.floor(y))
我还建议您不要说analysis_type == 1
,而是说
analysis_type = CUBIC
(即描述分析类型的名称)并将名称设置为1.这不会简化为使代码更易于阅读。
您可能会发现Martin Fowler的书Refactoring或William Wake的Refactoring Workbook作为了解清理代码的方法(the website也可用,但不知道“代码”书中描述的气味,并没有那么有用。