我理解from this question如果我想拥有一个线程安全的set
,我必须自己实现线程安全部分。
因此我可以提出:
from threading import Lock
class LockedSet(set):
"""A set where add() and remove() are thread-safe"""
def __init__(self, *args, **kwargs):
# Create a lock
self._lock = Lock()
# Call the original __init__
super(LockedSet, self).__init__(*args, **kwargs)
def add(self, elem):
self._lock.acquire()
try:
super(LockedSet, self).add(elem)
finally:
self._lock.release()
def remove(self, elem):
self._lock.acquire()
try:
super(LockedSet, self).remove(elem)
finally:
self._lock.release()
因此,当然只有add()和remove()在此实现中是线程安全的。其他方法不是因为它们没有在子类中被覆盖。
现在,模式非常简单:获取锁定,调用原始方法,释放锁定。
如果我遵循上面的逻辑,我将不得不以基本相同的方式覆盖set
公开的所有方法,例如:
(伪代码)
def <method>(<args>):
1. acquire lock
2. try:
3. call original method passing <args>
4. finally:
5. release lock
(/伪代码)
这不仅乏味而且容易出错。那么,关于如何以更好的方式处理这个问题的任何想法/建议?
答案 0 :(得分:50)
您可以使用Python的元编程工具来完成此任务。 (注意:写得很快,没有经过彻底的测试。)我更喜欢使用类装饰器。
我还认为可能需要锁定超过add
和remove
才能设置线程安全,但我不确定。我会忽略这个问题,只关注你的问题。
还要考虑委托(代理)是否比子类更合适。包装对象是Python中常用的方法。
最后,没有元编程的“魔杖”可以神奇地为任何可变的Python集合添加细粒度锁定。最安全的做法是使用RLock
锁定任何方法或属性访问,但这是非常粗粒度和缓慢的,可能仍然不能保证您的对象是线程安全的在所有情况下。 (例如,您可能有一个集合来操纵其他线程可以访问的另一个非线程安全对象。)您确实需要检查每个数据结构并考虑哪些操作是原子操作或需要锁定以及哪些方法可能调用其他方法使用相同的锁(即死锁本身)。
也就是说,这里有一些技术可以提升抽象顺序:
class LockProxy(object):
def __init__(self, obj):
self.__obj = obj
self.__lock = RLock()
# RLock because object methods may call own methods
def __getattr__(self, name):
def wrapped(*a, **k):
with self.__lock:
getattr(self.__obj, name)(*a, **k)
return wrapped
lockedset = LockProxy(set([1,2,3]))
class LockedSet(set):
"""A set where add(), remove(), and 'in' operator are thread-safe"""
def __init__(self, *args, **kwargs):
self._lock = Lock()
super(LockedSet, self).__init__(*args, **kwargs)
def add(self, elem):
with self._lock:
super(LockedSet, self).add(elem)
def remove(self, elem):
with self._lock:
super(LockedSet, self).remove(elem)
def __contains__(self, elem):
with self._lock:
super(LockedSet, self).__contains__(elem)
def locked_method(method):
"""Method decorator. Requires a lock object at self._lock"""
def newmethod(self, *args, **kwargs):
with self._lock:
return method(self, *args, **kwargs)
return newmethod
class DecoratorLockedSet(set):
def __init__(self, *args, **kwargs):
self._lock = Lock()
super(DecoratorLockedSet, self).__init__(*args, **kwargs)
@locked_method
def add(self, *args, **kwargs):
return super(DecoratorLockedSet, self).add(elem)
@locked_method
def remove(self, *args, **kwargs):
return super(DecoratorLockedSet, self).remove(elem)
我认为这是抽象方法中最干净,最容易理解的,所以我将它扩展为允许指定锁定方法和锁定对象工厂。
def lock_class(methodnames, lockfactory):
return lambda cls: make_threadsafe(cls, methodnames, lockfactory)
def lock_method(method):
if getattr(method, '__is_locked', False):
raise TypeError("Method %r is already locked!" % method)
def locked_method(self, *arg, **kwarg):
with self._lock:
return method(self, *arg, **kwarg)
locked_method.__name__ = '%s(%s)' % ('lock_method', method.__name__)
locked_method.__is_locked = True
return locked_method
def make_threadsafe(cls, methodnames, lockfactory):
init = cls.__init__
def newinit(self, *arg, **kwarg):
init(self, *arg, **kwarg)
self._lock = lockfactory()
cls.__init__ = newinit
for methodname in methodnames:
oldmethod = getattr(cls, methodname)
newmethod = lock_method(oldmethod)
setattr(cls, methodname, newmethod)
return cls
@lock_class(['add','remove'], Lock)
class ClassDecoratorLockedSet(set):
@lock_method # if you double-lock a method, a TypeError is raised
def frobnify(self):
pass
__getattribute__
class AttrLockedSet(set):
def __init__(self, *args, **kwargs):
self._lock = Lock()
super(AttrLockedSet, self).__init__(*args, **kwargs)
def __getattribute__(self, name):
if name in ['add','remove']:
# note: makes a new callable object "lockedmethod" on every call
# best to add a layer of memoization
lock = self._lock
def lockedmethod(*args, **kwargs):
with lock:
return super(AttrLockedSet, self).__getattribute__(name)(*args, **kwargs)
return lockedmethod
else:
return super(AttrLockedSet, self).__getattribute__(name)
__new__
class NewLockedSet(set):
def __new__(cls, *args, **kwargs):
# modify the class by adding new unbound methods
# you could also attach a single __getattribute__ like above
for membername in ['add', 'remove']:
def scoper(membername=membername):
# You can also return the function or use a class
def lockedmethod(self, *args, **kwargs):
with self._lock:
m = getattr(super(NewLockedSet, self), membername)
return m(*args, **kwargs)
lockedmethod.__name__ = membername
setattr(cls, membername, lockedmethod)
self = super(NewLockedSet, cls).__new__(cls, *args, **kwargs)
self._lock = Lock()
return self
__metaclass__
def _lockname(classname):
return '_%s__%s' % (classname, 'lock')
class LockedClass(type):
def __new__(mcls, name, bases, dict_):
# we'll bind these after we add the methods
cls = None
def lockmethodfactory(methodname, lockattr):
def lockedmethod(self, *args, **kwargs):
with getattr(self, lockattr):
m = getattr(super(cls, self), methodname)
return m(*args,**kwargs)
lockedmethod.__name__ = methodname
return lockedmethod
lockattr = _lockname(name)
for methodname in ['add','remove']:
dict_[methodname] = lockmethodfactory(methodname, lockattr)
cls = type.__new__(mcls, name, bases, dict_)
return cls
def __call__(self, *args, **kwargs):
#self is a class--i.e. an "instance" of the LockedClass type
instance = super(LockedClass, self).__call__(*args, **kwargs)
setattr(instance, _lockname(self.__name__), Lock())
return instance
class MetaLockedSet(set):
__metaclass__ = LockedClass
def LockedClassMetaFactory(wrapmethods):
class LockedClass(type):
def __new__(mcls, name, bases, dict_):
# we'll bind these after we add the methods
cls = None
def lockmethodfactory(methodname, lockattr):
def lockedmethod(self, *args, **kwargs):
with getattr(self, lockattr):
m = getattr(super(cls, self), methodname)
return m(*args,**kwargs)
lockedmethod.__name__ = methodname
return lockedmethod
lockattr = _lockname(name)
for methodname in wrapmethods:
dict_[methodname] = lockmethodfactory(methodname, lockattr)
cls = type.__new__(mcls, name, bases, dict_)
return cls
def __call__(self, *args, **kwargs):
#self is a class--i.e. an "instance" of the LockedClass type
instance = super(LockedClass, self).__call__(*args, **kwargs)
setattr(instance, _lockname(self.__name__), Lock())
return instance
return LockedClass
class MetaFactoryLockedSet(set):
__metaclass__ = LockedClassMetaFactory(['add','remove'])
我打赌使用一个简单的,明确的try...finally
现在看起来不那么糟糕,对吗?
为读者练习:让调用者使用任何这些方法传递他们自己的Lock()
对象(依赖注入)。
答案 1 :(得分:2)
[确实,看到评论,这不是真的]
如果您正在运行CPython,您可以从设置的源代码中看到它没有发布GIL(http://hg.python.org/cpython/file/db20367b20de/Objects/setobject.c)所以它的全部操作应该是原子的。
如果这就是您所需要的,并且您确定在CPython上运行您的代码,您可以直接使用它。
答案 2 :(得分:2)
这是我第一次尝试使用装饰器(尽管我的代码实际上并没有使用@decorate语法),而且我对多线程/多处理没有多少经验。但是,有了这个免责声明,这是我的一次尝试:
from multiprocessing import Lock
def decorate_all(obj):
lock = Lock()
#you'll want to make this more robust:
fnc_names = [fnctn for fnctn in dir(obj) if '__' not in fnctn]
for name in fnc_names:
print 'decorating ' + name
fnc = getattr(obj, name)
setattr(obj, name, decorate(fnc, lock))
return obj
def decorate(fnctn, lock):
def decorated(*args):
print 'acquiring lock'
lock.acquire()
try:
print 'calling decorated function'
return fnctn(*args)
finally:
print 'releasing lock'
lock.release()
return decorated
def thread_safe(superclass):
lock = Lock()
class Thread_Safe(superclass):
def __init__(self, *args, **kwargs):
super(Thread_Safe, self).__init__(*args, **kwargs)
return decorate_all(Thread_Safe)
>>> thread_safe_set = thread_safe(set)
decorating add
decorating clear
decorating copy
decorating difference
decorating difference_update
decorating discard
decorating intersection
decorating intersection_update
decorating isdisjoint
decorating issubset
decorating issuperset
decorating pop
decorating remove
decorating symmetric_difference
decorating symmetric_difference_update
decorating union
decorating update
>>> s = thread_safe_set()
>>> s.add(1)
acquiring lock
calling decorated function
releasing lock
>>> s.add(4)
acquiring lock
calling decorated function
releasing lock
>>> s.pop()
acquiring lock
calling decorated function
releasing lock
1
>>> s.pop()
acquiring lock
calling decorated function
releasing lock
4
>>>
答案 3 :(得分:0)
您可以实现自己的上下文管理器:
class LockableSet:
def __enter__(self):
self.lock()
return self
def __exit__(self, exc_type, exc_value, traceback):
#Do what you want with the error
self.unlock()
with LockableSet() as s:
s.whatever()
raise Exception()
无论如何,最后都会调用对象的__exit__
方法。更详细的信息可用here(python官方文档)。
此方法的另一个用途可能是方法的lock
装饰器,如下所示:
def lock(func):
def safe_func(self, *args, **kwargs):
with self:
func(self, *args, **kwargs)
return safe_func