此代码运行缓慢:
public static class DB
{
readonly static InlineSql sql = new InlineSql();
public static IEnumerable<LabItem> GetLabItemsFromLabLineItems(IEnumerable<LabLineItem> items)
{
/*
* Business Rule :
* The sproc used to retrieve lab line items has no way of "grouping" lab items out of line items.
* To compensate, the sproc orders its results by IDCode, we group everything and use the first of each grouping to represent that ID Code.
* That very same item is also the first item in its Items property.
* */
return items
.GroupBy(c => c.IDCode , c => c, (c, d) => d.First())
.Select(c => new LabItem(c.IDCode, c.OrderGuid, c.Name, c.SignificantDtm, c.Status, c.Description, items.Where(d => string.Compare(d.IDCode, c.IDCode, true) == 0 )));
}
}
特别是我们将d.IDCode与c.IDCode进行比较的select语句似乎是个问题。该行报告来自ANTS的命中数为9000万,时间百分比为14.8。 items.count
约为9,000。
我知道我的断点没有达到9000万次。点击计数在这里意味着什么?
其他有用的代码:
LabItem
有List<LabLineItem>
,这是我们在此比较的内容。 LabLineItem.Equals
:
public override bool Equals(object obj)
{
LabLineItem otherItem = obj as LabLineItem;
if (otherItem == null) return false;
return
OrderGuid == otherItem.OrderGuid
&& IDCode == otherItem.IDCode
&& SignificantDtm == otherItem.SignificantDtm
&& ObservationGuid == otherItem.ObservationGuid
&& string.Compare(Value, otherItem.Value, true) == 0;
}
public override int GetHashCode()
{
return
OrderGuid.GetHashCode()
^ IDCode.GetHashCode()
^ SignificantDtm.GetHashCode()
^ ObservationGuid.GetHashCode();
}
答案 0 :(得分:4)
ANTS说Select
string.Compare
次string.Compare
次点击次数是9000万次,因为对于主列表中的每个项目,它都会再次搜索整个列表。
每个主要的9000次迭代都会导致9000次额外的迭代,因此LabItem
必须至少被调用81,000,000次。
我建议构建分组的缓存,然后使用它来构建var groupedItems = items.GroupBy(c => c.IDCode);
return items.Select(c =>
new LabItem(c.IDCode, c.OrderGuid, c.Name, c.SignificantDtm, c.Status, c.Description,
groupedItems.Where(d => string.Compare(d.Key, c.IDCode, true) == 0 ).SelectMany(group => group)));
。
也许是这样的:
{{1}}