所以,我编写了这个代码,它应该有效地估计定义为h(x)的函数曲线下的面积。我的问题是我需要能够将区域估计到小数点后6位,但我在estimateN中定义的算法似乎对我的机器来说太重了。基本上问题是如何使以下代码更有效?有没有办法摆脱那个循环?
h = function(x) {
return(1+(x^9)+(x^3))
}
estimateN = function(n) {
count = 0
k = 1
xpoints = runif(n, 0, 1)
ypoints = runif(n, 0, 3)
while(k <= n){
if(ypoints[k]<=h(xpoints[k]))
count = count+1
k = k+1
}
#because of the range that im using for y
return(3*(count/n))
}
#uses the fact that err<=1/sqrt(n) to determine size of dataset
estimate_to = function(i) {
n = (10^i)^2
print(paste(n, " repetitions: ", estimateN(n)))
}
estimate_to(6)
答案 0 :(得分:8)
替换此代码:
count = 0
k = 1
while(k <= n){
if(ypoints[k]<=h(xpoints[k]))
count = count+1
k = k+1
}
这一行:
count <- sum(ypoints <= h(xpoints))
答案 1 :(得分:1)
如果你真正有效地努力,integrate
对于这个问题来说要快几个数量级(更不用说内存效率更高)。
integrate(h, 0, 1)
# 1.35 with absolute error < 1.5e-14
microbenchmark(integrate(h, 0, 1), estimate_to(3), times=10)
# Unit: microseconds
# expr min lq median uq max neval
# integrate(h, 0, 1) 14.456 17.769 42.918 54.514 83.125 10
# estimate_to(3) 151980.781 159830.956 162290.668 167197.742 174881.066 10