pandas dataframe与一系列相乘

时间:2012-10-31 20:20:45

标签: dataframe pandas multiplying

将Pandas DataFrame的所有列乘以Series中存储的列向量的最佳方法是什么?我以前在Matlab中使用repmat()执行此操作,这在Pandas中不存在。我可以使用np.tile(),但每次来回转换数据结构看起来很难看。

感谢。

3 个答案:

答案 0 :(得分:46)

有什么问题
result = dataframe.mul(series, axis=0)

http://pandas.pydata.org/pandas-docs/stable/basics.html#flexible-binary-operations

答案 1 :(得分:10)

使用DataFrame方法apply可以非常简单地完成此操作。

In[1]: import pandas as pd; import numpy as np

In[2]: df = pd.DataFrame(np.arange(40.).reshape((8, 5)), columns=list('abcde')); df
Out[2]: 
        a   b   c   d   e
    0   0   1   2   3   4
    1   5   6   7   8   9
    2  10  11  12  13  14
    3  15  16  17  18  19
    4  20  21  22  23  24
    5  25  26  27  28  29
    6  30  31  32  33  34
    7  35  36  37  38  39

In[3]: ser = pd.Series(np.arange(8) * 10); ser
Out[3]: 
    0     0
    1    10
    2    20
    3    30
    4    40
    5    50
    6    60
    7    70

现在我们已经有了DataFrameSeries,我们需要一个函数传递给apply

In[4]: func = lambda x: np.asarray(x) * np.asarray(ser)

我们可以将此传递给df.apply,我们很高兴

In[5]: df.apply(func)
Out[5]:
          a     b     c     d     e
    0     0     0     0     0     0
    1    50    60    70    80    90
    2   200   220   240   260   280
    3   450   480   510   540   570
    4   800   840   880   920   960
    5  1250  1300  1350  1400  1450
    6  1800  1860  1920  1980  2040
    7  2450  2520  2590  2660  2730

df.apply默认情况下按列进行操作,但也可以通过将axis=1作为参数传递给apply来按行进行操作。

In[6]: ser2 = pd.Series(np.arange(5) *5); ser2
Out[6]: 
    0     0
    1     5
    2    10
    3    15
    4    20

In[7]: func2 = lambda x: np.asarray(x) * np.asarray(ser2)

In[8]: df.apply(func2, axis=1)
Out[8]: 
       a    b    c    d    e
    0  0    5   20   45   80
    1  0   30   70  120  180
    2  0   55  120  195  280
    3  0   80  170  270  380
    4  0  105  220  345  480
    5  0  130  270  420  580
    6  0  155  320  495  680
    7  0  180  370  570  780

通过在apply

中定义匿名函数,可以更简洁地完成此操作
In[9]: df.apply(lambda x: np.asarray(x) * np.asarray(ser))
Out[9]: 
          a     b     c     d     e
    0     0     0     0     0     0
    1    50    60    70    80    90
    2   200   220   240   260   280
    3   450   480   510   540   570
    4   800   840   880   920   960
    5  1250  1300  1350  1400  1450
    6  1800  1860  1920  1980  2040
    7  2450  2520  2590  2660  2730

In[10]: df.apply(lambda x: np.asarray(x) * np.asarray(ser2), axis=1)
Out[10]:
       a    b    c    d    e
    0  0    5   20   45   80
    1  0   30   70  120  180
    2  0   55  120  195  280
    3  0   80  170  270  380
    4  0  105  220  345  480
    5  0  130  270  420  580
    6  0  155  320  495  680
    7  0  180  370  570  780

答案 2 :(得分:1)

为什么不创建自己的数据框图块功能:

def tile_df(df, n, m):
    dfn = df.T
    for _ in range(1, m):
        dfn = dfn.append(df.T, ignore_index=True)
    dfm = dfn.T
    for _ in range(1, n):
        dfm = dfm.append(dfn.T, ignore_index=True)
    return dfm

实施例

df = pandas.DataFrame([[1,2],[3,4]])
tile_df(df, 2, 3)
#    0  1  2  3  4  5
# 0  1  2  1  2  1  2
# 1  3  4  3  4  3  4
# 2  1  2  1  2  1  2
# 3  3  4  3  4  3  4

然而docs注意:“DataFrame并不打算成为ndarray的替代品,因为它的索引语义与矩阵的位置完全不同。 “大概应该被解释为”如果你做了很多矩阵的事情就会使用numpy“