我有一个包含pts
点的列表N
(Python浮点数)。我希望构造一个维度为N*N*N*3
的NumPy数组,使得数组等效于:
for i in xrange(0, N):
for j in xrange(0, N):
for k in xrange(0, N):
arr[i,j,k,0] = pts[i]
arr[i,j,k,1] = pts[j]
arr[i,j,k,2] = pts[k]
我想知道如何利用NumPy的数组广播规则和tile
之类的函数来简化这一过程。
答案 0 :(得分:3)
我认为以下内容应该有效:
pts = np.array(pts) #Skip if pts is a numpy array already
lp = len(pts)
arr = np.zeros((lp,lp,lp,3))
arr[:,:,:,0] = pts[:,None,None] #None is the same as np.newaxis
arr[:,:,:,1] = pts[None,:,None]
arr[:,:,:,2] = pts[None,None,:]
快速测试:
import numpy as np
import timeit
def meth1(pts):
pts = np.array(pts) #Skip if pts is a numpy array already
lp = len(pts)
arr = np.zeros((lp,lp,lp,3))
arr[:,:,:,0] = pts[:,None,None] #None is the same as np.newaxis
arr[:,:,:,1] = pts[None,:,None]
arr[:,:,:,2] = pts[None,None,:]
return arr
def meth2(pts):
lp = len(pts)
N = lp
arr = np.zeros((lp,lp,lp,3))
for i in xrange(0, N):
for j in xrange(0, N):
for k in xrange(0, N):
arr[i,j,k,0] = pts[i]
arr[i,j,k,1] = pts[j]
arr[i,j,k,2] = pts[k]
return arr
pts = range(10)
a1 = meth1(pts)
a2 = meth2(pts)
print np.all(a1 == a2)
NREPEAT = 10000
print timeit.timeit('meth1(pts)','from __main__ import meth1,pts',number=NREPEAT)
print timeit.timeit('meth2(pts)','from __main__ import meth2,pts',number=NREPEAT)
结果:
True
0.873255968094 #my way
11.4249279499 #original
所以这种新方法也快了一个数量级。
答案 1 :(得分:1)
import numpy as np
N = 10
pts = xrange(0,N)
l = [ [ [ [ pts[i],pts[j],pts[k] ] for k in xrange(0,N) ] for j in xrange(0,N) ] for i in xrange(0,N) ]
x = np.array(l, np.int32)
print x.shape # (10,10,10,3)
答案 2 :(得分:1)
这可以分为两行:
def meth3(pts):
arrs = np.broadcast_arrays(*np.ix_(pts, pts, pts))
return np.concatenate([a[...,None] for a in arrs], axis=3)
然而,这种方法没有mgilson的答案快,因为concatenate
非常慢。然而,他的答案的通用版本也大致相同,并且可以为任何数组集生成您想要的结果(即包含在n维网格中的n维笛卡尔积)。
def meth4(arrs): # or meth4(*arrs) for a simplified interface
arr = np.empty([len(a) for a in arrs] + [len(arrs)])
for i, a in enumerate(np.ix_(*arrs)):
arr[...,i] = a
return arr
这接受任何序列序列,只要它可以转换为numpy数组序列:
>>> meth4([[0, 1], [2, 3]])
array([[[ 0., 2.],
[ 0., 3.]],
[[ 1., 2.],
[ 1., 3.]]])
这种普遍性的代价并不算太高 - 对于小型pts
数组而言只是它的两倍:
>>> (meth4([pts, pts, pts]) == meth1(pts)).all()
True
>>> %timeit meth4([pts, pts, pts])
10000 loops, best of 3: 27.4 us per loop
>>> %timeit meth1(pts)
100000 loops, best of 3: 13.1 us per loop
对于较大的实际上它实际上要快一点(虽然速度增益可能是由于我使用了empty
而不是zeros
):
>>> pts = np.linspace(0, 1, 100)
>>> %timeit meth4([pts, pts, pts])
100 loops, best of 3: 13.4 ms per loop
>>> %timeit meth1(pts)
100 loops, best of 3: 16.7 ms per loop