我想得到java中两个数组所代表的x-y对的加权线性回归系数。我已经注意到了weka,但它在'LinearRegression'类中询问了一个'Instances'类对象。要创建“Instances”类文件,需要包含数据的ARFF文件。我遇到过使用FastVector类的解决方案,但现在已经在最新的weka版本中弃用了。如何为x-y对创建一个ARFF文件,并在java中用数组表示相应的权重?
这是我的代码基于Baz的答案。它在最后一行“lr.buildClassifier(newDataset)”上给出一个例外 - Thread [main](Suspended(异常UnassignedClassException))
Capabilities.testWithFail(Instances)行:1302。这是代码 -
public static void test() throws Exception
{
double[][] data = {{4058.0, 4059.0, 4060.0, 214.0, 1710.0, 2452.0, 2473.0, 2474.0, 2475.0, 2476.0, 2477.0, 2478.0, 2688.0, 2905.0, 2906.0, 2907.0, 2908.0, 2909.0, 2950.0, 2969.0, 2970.0, 3202.0, 3342.0, 3900.0, 4007.0, 4052.0, 4058.0, 4059.0, 4060.0}, {19.0, 20.0, 21.0, 31.0, 103.0, 136.0, 141.0, 142.0, 143.0, 144.0, 145.0, 146.0, 212.0, 243.0, 244.0, 245.0, 246.0, 247.0, 261.0, 270.0, 271.0, 294.0, 302.0, 340.0, 343.0, 354.0, 356.0, 357.0, 358.0}};
int numInstances = data[0].length;
ArrayList<Attribute> atts = new ArrayList<Attribute>();
List<Instance> instances = new ArrayList<Instance>();
for(int dim = 0; dim < 2; dim++)
{
Attribute current = new Attribute("Attribute" + dim, dim);
if(dim == 0)
{
for(int obj = 0; obj < numInstances; obj++)
{
instances.add(new SparseInstance(numInstances));
}
}
for(int obj = 0; obj < numInstances; obj++)
{
instances.get(obj).setValue(current, data[dim][obj]);
//instances.get(obj).setWeight(weights[obj]);
}
atts.add(current);
}
Instances newDataset = new Instances("Dataset", atts, instances.size());
for(Instance inst : instances)
newDataset.add(inst);
LinearRegression lr = new LinearRegression();
lr.buildClassifier(newDataset);
}
答案 0 :(得分:5)
我认为这可能会对您有所帮助:
FastVector atts = new FastVector();
List<Instance> instances = new ArrayList<Instance>();
for(int dim = 0; dim < numDimensions; dim++)
{
// Create new attribute / dimension
Attribute current = new Attribute("Attribute" + dim, dim);
// Create an instance for each data object
if(dim == 0)
{
for(int obj = 0; obj < numInstances; obj++)
{
instances.add(new SparseInstance(numDimensions));
}
}
// Fill the value of dimension "dim" into each object
for(int obj = 0; obj < numInstances; obj++)
{
instances.get(obj).setValue(current, data[dim][obj]);
}
// Add attribute to total attributes
atts.addElement(current);
}
// Create new dataset
Instances newDataset = new Instances("Dataset", atts, instances.size());
// Fill in data objects
for(Instance inst : instances)
newDataset.add(inst);
之后Instances
就是数据集。
注意:即使我使用FastVector
,Weka的当前版本(3.6.8)也没有抱怨。
但是,对于开发者版本(3.7.7),请使用:
ArrayList<Attribute> atts = new ArrayList<Attribute>();
List<Instance> instances = new ArrayList<Instance>();
for(int dim = 0; dim < numDimensions; dim++)
{
Attribute current = new Attribute("Attribute" + dim, dim);
if(dim == 0)
{
for(int obj = 0; obj < numInstances; obj++)
{
instances.add(new SparseInstance(numDimensions));
}
}
for(int obj = 0; obj < numInstances; obj++)
{
instances.get(obj).setValue(current, data[dim][obj]);
}
atts.add(current);
}
Instances newDataset = new Instances("Dataset", atts, instances.size());
for(Instance inst : instances)
newDataset.add(inst);
答案 1 :(得分:0)