我想在python中创建一个redis缓存,就像任何一个自尊的科学家一样,我做了一个基准测试来测试性能。
有趣的是,redis并没有那么好。要么Python正在做一些神奇的事情(存储文件),要么我的版本的redis显然很慢。
我不知道这是因为我的代码的结构方式是什么,或者是什么,但我期望redis做得比它更好。
要创建redis缓存,我将二进制数据(在本例中为HTML页面)设置为从文件名派生的密钥,其有效期为5分钟。
在所有情况下,使用f.read()完成文件处理(这比f.readlines()快约3倍,我需要二进制blob)。
我的比较中是否有我遗漏的东西,或者Redis真的与磁盘不匹配? Python是否在某处缓存文件,并且每次都重新访问它?为什么这比访问redis要快得多?
我在64位Ubuntu系统上使用redis 2.8,python 2.7和redis-py。
我不认为Python正在做任何特别神奇的事情,因为我创建了一个将文件数据存储在python对象中并永久产生它的函数。
我分组了四个函数调用:
读取文件X次
调用一个函数来查看redis对象是否仍在内存中,加载它或缓存新文件(单个和多个redis实例)。
一个创建生成器的函数,该生成器从redis数据库生成结果(具有redis的单个和多个实例)。
最后,将文件存储在内存中并永久产生。
import redis
import time
def load_file(fp, fpKey, r, expiry):
with open(fp, "rb") as f:
data = f.read()
p = r.pipeline()
p.set(fpKey, data)
p.expire(fpKey, expiry)
p.execute()
return data
def cache_or_get_gen(fp, expiry=300, r=redis.Redis(db=5)):
fpKey = "cached:"+fp
while True:
yield load_file(fp, fpKey, r, expiry)
t = time.time()
while time.time() - t - expiry < 0:
yield r.get(fpKey)
def cache_or_get(fp, expiry=300, r=redis.Redis(db=5)):
fpKey = "cached:"+fp
if r.exists(fpKey):
return r.get(fpKey)
else:
with open(fp, "rb") as f:
data = f.read()
p = r.pipeline()
p.set(fpKey, data)
p.expire(fpKey, expiry)
p.execute()
return data
def mem_cache(fp):
with open(fp, "rb") as f:
data = f.readlines()
while True:
yield data
def stressTest(fp, trials = 10000):
# Read the file x number of times
a = time.time()
for x in range(trials):
with open(fp, "rb") as f:
data = f.read()
b = time.time()
readAvg = trials/(b-a)
# Generator version
# Read the file, cache it, read it with a new instance each time
a = time.time()
gen = cache_or_get_gen(fp)
for x in range(trials):
data = next(gen)
b = time.time()
cachedAvgGen = trials/(b-a)
# Read file, cache it, pass in redis instance each time
a = time.time()
r = redis.Redis(db=6)
gen = cache_or_get_gen(fp, r=r)
for x in range(trials):
data = next(gen)
b = time.time()
inCachedAvgGen = trials/(b-a)
# Non generator version
# Read the file, cache it, read it with a new instance each time
a = time.time()
for x in range(trials):
data = cache_or_get(fp)
b = time.time()
cachedAvg = trials/(b-a)
# Read file, cache it, pass in redis instance each time
a = time.time()
r = redis.Redis(db=6)
for x in range(trials):
data = cache_or_get(fp, r=r)
b = time.time()
inCachedAvg = trials/(b-a)
# Read file, cache it in python object
a = time.time()
for x in range(trials):
data = mem_cache(fp)
b = time.time()
memCachedAvg = trials/(b-a)
print "\n%s file reads: %.2f reads/second\n" %(trials, readAvg)
print "Yielding from generators for data:"
print "multi redis instance: %.2f reads/second (%.2f percent)" %(cachedAvgGen, (100*(cachedAvgGen-readAvg)/(readAvg)))
print "single redis instance: %.2f reads/second (%.2f percent)" %(inCachedAvgGen, (100*(inCachedAvgGen-readAvg)/(readAvg)))
print "Function calls to get data:"
print "multi redis instance: %.2f reads/second (%.2f percent)" %(cachedAvg, (100*(cachedAvg-readAvg)/(readAvg)))
print "single redis instance: %.2f reads/second (%.2f percent)" %(inCachedAvg, (100*(inCachedAvg-readAvg)/(readAvg)))
print "python cached object: %.2f reads/second (%.2f percent)" %(memCachedAvg, (100*(memCachedAvg-readAvg)/(readAvg)))
if __name__ == "__main__":
fileToRead = "templates/index.html"
stressTest(fileToRead)
现在的结果是:
10000 file reads: 30971.94 reads/second
Yielding from generators for data:
multi redis instance: 8489.28 reads/second (-72.59 percent)
single redis instance: 8801.73 reads/second (-71.58 percent)
Function calls to get data:
multi redis instance: 5396.81 reads/second (-82.58 percent)
single redis instance: 5419.19 reads/second (-82.50 percent)
python cached object: 1522765.03 reads/second (4816.60 percent)
结果很有趣,因为a)生成器每次调用函数的速度都快,b)redis比从磁盘读取要快,c)从python对象读取速度非常快。
为什么从磁盘读取比从redis读取内存文件要快得多?
编辑: 更多信息和测试。
我将功能替换为
data = r.get(fpKey)
if data:
return r.get(fpKey)
结果与
没什么不同if r.exists(fpKey):
data = r.get(fpKey)
Function calls to get data using r.exists as test
multi redis instance: 5320.51 reads/second (-82.34 percent)
single redis instance: 5308.33 reads/second (-82.38 percent)
python cached object: 1494123.68 reads/second (5348.17 percent)
Function calls to get data using if data as test
multi redis instance: 8540.91 reads/second (-71.25 percent)
single redis instance: 7888.24 reads/second (-73.45 percent)
python cached object: 1520226.17 reads/second (5132.01 percent)
在每个函数调用上创建一个新的redis实例实际上对读取速度没有明显的影响,从测试到测试的可变性大于增益。
Sripathi Krishnan建议实施随机文件读取。正如我们从这些结果中可以看到的那样,这是缓存开始真正有用的地方。
Total number of files: 700
10000 file reads: 274.28 reads/second
Yielding from generators for data:
multi redis instance: 15393.30 reads/second (5512.32 percent)
single redis instance: 13228.62 reads/second (4723.09 percent)
Function calls to get data:
multi redis instance: 11213.54 reads/second (3988.40 percent)
single redis instance: 14420.15 reads/second (5157.52 percent)
python cached object: 607649.98 reads/second (221446.26 percent)
文件读取存在大量可变性,因此差异百分比不是加速的良好指标。
Total number of files: 700
40000 file reads: 1168.23 reads/second
Yielding from generators for data:
multi redis instance: 14900.80 reads/second (1175.50 percent)
single redis instance: 14318.28 reads/second (1125.64 percent)
Function calls to get data:
multi redis instance: 13563.36 reads/second (1061.02 percent)
single redis instance: 13486.05 reads/second (1054.40 percent)
python cached object: 587785.35 reads/second (50214.25 percent)
我使用random.choice(fileList)在每次通过函数时随机选择一个新文件。
如果有人想尝试一下,那么完整的要点就在这里 - https://gist.github.com/3885957
修改编辑: 没有意识到我正在为发生器调用一个单独的文件(尽管函数调用和生成器的性能非常相似)。这是来自生成器的不同文件的结果。
Total number of files: 700
10000 file reads: 284.48 reads/second
Yielding from generators for data:
single redis instance: 11627.56 reads/second (3987.36 percent)
Function calls to get data:
single redis instance: 14615.83 reads/second (5037.81 percent)
python cached object: 580285.56 reads/second (203884.21 percent)
答案 0 :(得分:32)
这是苹果与橘子的比较。 见http://redis.io/topics/benchmarks
Redis是一个高效的远程数据存储。每次在Redis上执行命令时,都会向Redis服务器发送一条消息,如果客户端是同步的,它会阻止等待回复。因此,除了命令本身的成本之外,您还需要支付网络往返或IPC费用。
在现代硬件上,与其他操作相比,网络往返或IPC的成本惊人。这是由于以下几个因素:
现在,让我们回顾一下结果。
使用生成器和使用函数调用的实现进行比较,它们不会向Redis生成相同数量的往返。使用生成器,您只需:
while time.time() - t - expiry < 0:
yield r.get(fpKey)
每次迭代1次往返。有了这个功能,你有:
if r.exists(fpKey):
return r.get(fpKey)
每次迭代2次往返。难怪发电机更快。
当然,您应该重复使用相同的Redis连接以获得最佳性能。没有必要运行系统连接/断开的基准。
最后,关于Redis调用和文件读取之间的性能差异,您只需将本地调用与远程调用进行比较。文件读取由OS文件系统缓存,因此它们是内核和Python之间的快速内存传输操作。这里没有涉及磁盘I / O.使用Redis,您必须支付往返的费用,因此速度要慢得多。