Radix使用队列排序

时间:2012-10-05 18:13:28

标签: c linked-list queue radix-sort

我想要使用队列创建radix sort实现。

我无法弄清楚我的代码中哪些部分存在问题,或者我应该阅读哪些资源。 我的代码可能完全错误,但这是我的实现,没有任何帮助(我尚未采用数据结构和算法课程)。

我创建了一个函数,但它没有工作。在做研究时,我看到了一些代码示例,但对我来说似乎更复杂。

首先我想找到所有整数的最低位数 然后在下标匹配的队列元素中对它们进行排序, 排序后将然后复制所有队列到第11个队列元素的结尾。 在第11个队列元素中再次进行排序,直到达到最高位数。

我可以找到最不重要的数字。并根据这个数字排序。但是,我无法分析其他数字。例如; 我可以排序1,2,4,5,3,但是当排序2位或更多位数时,它会失败......

我希望,我很清楚并简要解释了我的问题。

// My function declaration
// Pre: arrInts holds the linked list of integers which are going to be sort.
// Post: queue will return result and its 11th element should hold sorted integers in
//       that queue
queue_node_t * radixSort(const queue_node_t *arrInts, queue_t *queue[], int size){
    queue_node_t *curNodep = arrInts; // Node to be checked
    int i, curNum = curNodep->element.key;
    if(curNodep == NULL){
        // If there is no other node left then assign them into 11th queue.
        for(i=0;i<=9;i++){
            if(queue[i]->rearp!=NULL){
                if(queue[10]->size == 0){
                    queue[10]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                    queue[10]->frontp = queue[10]->rearp;
                } else {
                    queue[10]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                    queue[10]->rearp = queue[10]->rearp->restp;
                }
                queue[10]->rearp = queue[i]->rearp;
                queue[10]->size += queue[i]->size;
            }
        }
        queue[10]->rearp = radixSort(queue[10]->rearp, queue, size);
    } else {
                // I used switch statement to handle least significant digit
        switch(curNum%10){
        case 0:
            if(queue[0]->size == 0){
                queue[0]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[0]->frontp = queue[0]->rearp;
            } else {
                queue[0]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[0]->rearp = queue[0]->rearp->restp;
            }
            ++(queue[0]->size);
            queue[0]->rearp->element = curNodep->element;
            queue[0]->rearp->restp = NULL;
            radixSort(curNodep->restp, queue, size);
            break;
        case 1:
            if(queue[1]->size == 0){
                queue[1]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[1]->frontp = queue[0]->rearp;
            } else {
                queue[1]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[1]->rearp = queue[1]->rearp->restp;
            }
            ++(queue[1]->size);
            queue[1]->rearp->element = curNodep->element;
            queue[1]->rearp->restp = NULL;
                        // I tried to make recursion but I guess this is one the problems
            radixSort(curNodep->restp, queue, size);
            break;
        case 2:
            if(queue[2]->size == 0){
                queue[2]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[2]->frontp = queue[2]->rearp;
            } else {
                queue[2]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[2]->rearp = queue[2]->rearp->restp;
            }
            ++(queue[2]->size);
            queue[2]->rearp->element = curNodep->element;
            queue[2]->rearp->restp = NULL;
            radixSort(curNodep->restp, queue, size);
            break;
        case 3:
            if(queue[3]->size == 0){
                queue[3]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[3]->frontp = queue[3]->rearp;
            } else {
                queue[3]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[3]->rearp = queue[3]->rearp->restp;
            }
            ++(queue[3]->size);
            queue[3]->rearp->element = curNodep->element;
            queue[3]->rearp->restp = NULL;

            queue[10]->rearp = radixSort(curNodep->restp, queue, size);
            break;
        case 4:
            if(queue[4]->size == 0){
                queue[4]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[4]->frontp = queue[4]->rearp;
            } else {
                queue[4]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[4]->rearp = queue[4]->rearp->restp;
            }
            ++(queue[4]->size);
            queue[4]->rearp->element = curNodep->element;
            queue[4]->rearp->restp = NULL;
            radixSort(curNodep->restp, queue, size);
            break;
        case 5:
            if(queue[5]->size == 0){
                queue[5]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[5]->frontp = queue[5]->rearp;
            } else {
                queue[5]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[5]->rearp = queue[5]->rearp->restp;
            }
            ++(queue[5]->size);
            queue[5]->rearp->element = curNodep->element;
            queue[5]->rearp->restp = NULL;

            radixSort(curNodep->restp, queue, size);
            break;
        case 6:
            if(queue[6]->size == 0){
                queue[6]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[6]->frontp = queue[6]->rearp;
            } else {
                queue[6]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[6]->rearp = queue[6]->rearp->restp;
            }
            ++(queue[6]->size);
            queue[6]->rearp->element = curNodep->element;
            queue[6]->rearp->restp = NULL;

            radixSort(curNodep->restp, queue, size);
            break;
        case 7:
            if(queue[7]->size == 0){
                queue[7]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[7]->frontp = queue[7]->rearp;
            } else {
                queue[7]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[7]->rearp = queue[7]->rearp->restp;
            }
            ++(queue[7]->size);
            queue[7]->rearp->element = curNodep->element;
            queue[7]->rearp->restp = NULL;

            radixSort(curNodep->restp, queue, size);
            break;
        case 8:
            if(queue[8]->size == 0){
                queue[8]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[8]->frontp = queue[8]->rearp;
            } else {
                queue[8]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[8]->rearp = queue[8]->rearp->restp;
            }
            ++(queue[8]->size);
            queue[8]->rearp->element = curNodep->element;
            queue[8]->rearp->restp = NULL;

            radixSort(curNodep->restp, queue, size);
            break;
        case 9:
            if(queue[9]->size == 0){
                queue[9]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
                queue[9]->frontp = queue[9]->rearp;
            } else {
                queue[9]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
                queue[9]->rearp = queue[9]->rearp->restp;
            }
            ++(queue[9]->size);
            queue[9]->rearp->element = curNodep->element;
            queue[9]->rearp->restp = NULL;

            radixSort(curNodep->restp, queue, size);
            break;
        }
    }

    return queue[10]->rearp;
}

编辑1(取得一些进展)

我遵循威廉莫里斯的建议。我不得不在CodeReview上问同样的问题,他给了我一些说明,让我的代码更清晰。

我将我的功能划分为函数并停止使用递归。

首先,我创建了一个add_to_q函数,它为相关队列增加了值,它有助于摆脱代码重复。顺便说一下James Khoury的方式最简单,但它再次使用递归。

void add_to_q(queue_t *queue_arr[], int value, int pos) {
if(queue_arr[pos]->size == 0){
    queue_arr[pos]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
    queue_arr[pos]->frontp = queue_arr[pos]->rearp;
} else {
    queue_arr[pos]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
    queue_arr[pos]->rearp = queue_arr[pos]->rearp->restp;
}
queue_arr[pos]->rearp->element = value;
queue_arr[pos]->size++;
}

其次我创建了其他辅助函数。一个是add_to_eleventh,它只是将所有队列元素添加到第十一个队列的后面。在我看来,它正在做什么问题。

queue_t * add_to_eleventh(queue_t *queue[]) {
int i;
for(i=0;i<=9;i++){
    while(queue[i]->frontp != NULL){
        if(queue[10]->size == 0){
            queue[10]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
            queue[10]->frontp = queue[10]->rearp;
        } else {
            queue[10]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
            queue[10]->rearp = queue[10]->rearp->restp;
        }
        if ( queue[i]->size != 0 ){
            queue[10]->rearp->element = queue[i]->frontp->element;
            printf("---%d***",queue[i]->frontp->element);
        }
        queue[10]->size+=1;
        queue[i]->frontp = queue[i]->frontp->restp;
        queue[10]->rearp->restp = NULL;
    }
}
return queue[10];
}

第三个​​,我的最后一个辅助函数是back_to_ints。它的目的是获取第11个队列中的元素并将它们除以10并将它们返回整数数组。

void back_to_ints(queue_t *arr[], int *new_arr) {
queue_node_t *cur_nodep;
cur_nodep = arr[10]->frontp;
int i = 0, digit;
while(cur_nodep != NULL){
    cur_nodep->element/=10;
    digit = cur_nodep->element / 10;
    new_arr[i++] = digit;
    cur_nodep = cur_nodep->restp;
}
}

最后我的新排序功能,现在将整数排在同一位数。这样,数字[7] = {112,133,122,334,345,447,346};

queue_t * radix_sort(int *arr, const int size,queue_t *sorted_arr[]) {
int i, digit[size], initials[size],j;
for(i=0;i<size;i++)
    initials[i] = arr[i];
i = 0;
while(initials[i] != 0){
    j = i;
    printf("initialssss%d", initials[--j]);
    back_to_ints(sorted_arr, initials);

    for(i=0;i<size;i++){
    digit[i] = initials[i] % 10;

    switch (digit[i]) {
    case 0:
        add_to_q(sorted_arr, arr[i], 0);
        break;
    case 1:
        add_to_q(sorted_arr, arr[i], 1);
        break;
    case 2:
        add_to_q(sorted_arr, arr[i], 2);
        break;
    case 3:
        add_to_q(sorted_arr, arr[i], 3);
        break;
    case 4:
        add_to_q(sorted_arr, arr[i], 4);
        break;
    case 5:
        add_to_q(sorted_arr, arr[i], 5);
        break;
    case 6:
        add_to_q(sorted_arr, arr[i], 6);
        break;
    case 7:
        add_to_q(sorted_arr, arr[i], 7);
        break;
    case 8:
        add_to_q(sorted_arr, arr[i], 8);
        break;
    case 9:
        add_to_q(sorted_arr, arr[i], 9);
        break;
        }
    }
    sorted_arr[10] = add_to_eleventh(sorted_arr);
    i++;
}
return sorted_arr[10];
}

我部分地解决了这个问题。如果要对相同位数的数字进行排序,则可行。否则,它失败了。例如,您的输入为112,133,122,334,345,447,346,结果将为 112 122 133 334 345 346 447 。但是,如果用户想要对类似的东西进行排序(111,13,12,334,345,447,1),则会给出 111 1 12 13 334 345 447 。那么,我怎样才能克服这个问题。

另外,我已经改变了我的头文件。

#ifndef RADIX_H_
#define RADIX_H_

typedef struct queue_node_s {
    int element;
    struct queue_node_s *restp;
}queue_node_t;

typedef struct {
    queue_node_t *frontp,
             *rearp;
    int size;
}queue_t;

queue_t * radix_sort(int *arr,const int size, queue_t *sorted_arr[]);
void add_to_q(queue_t *queue_arr[], int value, int pos);
queue_t * add_to_eleventh(queue_t *queue[]);
void back_to_ints(queue_t *arr[], int *new_arr);
void displayRadixed(queue_t *sorted[]);
#endif /* RADIX_H_ */

感谢您重新打开我的帖子......

4 个答案:

答案 0 :(得分:3)

我已经修改了你的队列了一下。为了更好地理解代码,我使用front和rear作为全局变量。

typedef struct queue *queue_ptr;
        struct queue {
               int data;
               queue_ptr next;
        };
queue_ptr front[10], rear[10];  /* For base 10, The 11th queue is not needed */

因此添加到队列的操作变为

void add_queue(int i, int data) {
        queue_ptr tmp;

        tmp = (queue_ptr) malloc(sizeof(*tmp));
        tmp->next = NULL;
        tmp->data = data;
        if (front[i]) {
                rear[i]->next = tmp;
        } else {
                front[i] = tmp;
        }   
        rear[i] = tmp;
}

并添加从队列中删除的操作(也返回数据)

int delete_queue(int i) {
        int data;
        queue_ptr tmp;

        tmp = front[i];
        if (!tmp) {
                return -1;  /* So that we can check if queue is empty */
        }   
        data = tmp->data;
        front[i] = tmp->next;
        free(tmp);
        return data;
}

所以现在我们可以实现基数排序。使用实际数字而不是单个数字将数据移动到队列中可能更容易。请注意,如果您可以修改测试数组* arr,则不需要第11个队列,并且您的radix_sort函数可能是这样的:

void radix_sort(int *arr, const int size) {
        int i, j, k, radix, digits, tmp;

        if (size < 1) {
                return;  /* don't do anything if invalid size */
        }

        /* get the number of digits */
        for (digits = 0, radix = 1; arr[0] >= radix; digits++, radix *= 10);

        /* perform sort (digits) times from LSB to MSB */
        for (i = 0, radix = 1; i < digits; i++, radix *= 10) {
                /* distribute into queues */
                for (j = 0; j < size; j++) {
                        add_queue((arr[j] / radix) % 10, arr[j]);
                }
                /* take them out from each queue to the original test array */
                for (j = 0, k = 0; j < 10; j++) {
                        for (tmp = delete_queue(j); tmp != -1;\
                             tmp = delete_queue(j), k++) {
                                arr[k] = tmp;
                        }
                }
        }
}

最后你可以通过调用radix_sort(your_array,your_array_size)进行测试,完整的代码是

#include <stdio.h>
#include <stdlib.h>

typedef struct queue *queue_ptr;
        struct queue {
               int data;
               queue_ptr next;
        };

queue_ptr front[10], rear[10];  /* For base 10, The 11th queue is not needed */

void add_queue(int i, int data) {
        queue_ptr tmp;

        tmp = (queue_ptr) malloc(sizeof(*tmp));
        tmp->next = NULL;
        tmp->data = data;
        if (front[i]) {
                rear[i]->next = tmp;
        } else {
                front[i] = tmp;
        }
        rear[i] = tmp;
}

int delete_queue(int i) {
        int data;
        queue_ptr tmp;

        tmp = front[i];
        if (!tmp) {
                return -1;  /* So that we can check if queue is empty */
        }
        data = tmp->data;
        front[i] = tmp->next;
        free(tmp);
        return data;
}

void radix_sort(int *arr, const int size) {
        int i, j, k, radix, digits, tmp;

        if (size < 1) {
                return;  /* don't do anything if invalid size */
        }

        /* get the number of digits */
        for (digits = 0, radix = 1; arr[0] >= radix; digits++, radix *=10);

        /* perform sort (digits) times from LSB to MSB */
        for (i = 0, radix = 1; i < digits; i++, radix *= 10) {
                /* distribute to queues */
                for (j = 0; j < size; j++) {
                        add_queue((arr[j] / radix) % 10, arr[j]);
                }
                /* take them out from each queue to the original test array */
                for (j = 0, k = 0; j < 10; j++) {
                        for (tmp = delete_queue(j); tmp != -1;\
                             tmp = delete_queue(j), k++) {
                                arr[k] = tmp;
                        }
                }
        }
}

int main(void) {
        int i;
        int a[5] = {133, 34, 555, 111, 12},
            b[12] = {1, 1, 1, 4, 5, 6, 7, 8, 9, 11, 11, 12};

        radix_sort(a, 5);
        radix_sort(b, 5);

        for (i = 0; i < 5; i++) {
                printf("%d ", a[i]);
        }
        printf("\n");

        for (i = 0; i < 12; i++) {
                printf("%d ", b[i]);
        }
        printf("\n");

        return 0;
}

,输出

12 34 111 133 555
1 1 1 4 5 6 7 8 9 11 11 12

答案 1 :(得分:1)

这里有一些很好的信息。在更高的层次上,调试代码将很困难,因为它比它需要的更复杂。下面是一个使用C以更惯用的方式表达算法的不同代码。

总的来说,在代码方面,通常更少:简单就是你的朋友。这里显示的功能:

  1. 循环单列表队列。队列是指向列表的尾节点的指针。有了这个,追加和连接是快速的恒定时间操作。
  2. 逻辑,可重用的功能分解。
  3. 只有大约80个SLOC,包括一个简单的测试。排序功能是18 SLOC。
  4. 轻度测试。
  5. 这是排序:

    // Radix sort the given queue.
    void sort(QUEUE *queue)
    {
      unsigned i, j, div;
      QUEUE queues[RADIX], accum;
    
      // Handle case of nothing to sort.
      if (*queue == NULL) return;
    
      // Accumulator queue initially holds unsorted input.
      accum = *queue;
    
      // Make one pass per radix digit.
      for (i = 0, div = RADIX; i < MAX_DIGITS; i++, div *= RADIX) {
    
        // Clear the radix queues.
        for (j = 0; j < RADIX; j++) queues[j] = NULL;
    
        // Append accumulator nodes onto radix queues based on current digit.
        NODE *p = accum, *p_next = p->next;
        do {
          // Save p->next here because append below will change it.
          p = p_next; p_next = p->next;
          append_node(&queues[p->val / div % RADIX], p);
        } while (p != accum);
    
        // Gather all the radix queues into the accumulator again.
        for (accum = NULL, j = 0; j < RADIX; j++) cat(&accum, queues[j]);
      }
      // Accumulator now holds sorted input.
      *queue = accum;
    }
    

    其余的:

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #define RADIX 10
    #define MAX_DIGITS 9
    
    // Node and circular queue. A queue is either null or a pointer to the _tail_ node.
    typedef struct node_s {
      struct node_s *next;
      unsigned val;
    } NODE, *QUEUE;
    
    // Make a new node with given value.
    NODE *new_node(unsigned val)
    {
      NODE *node = calloc(1, sizeof *node);
      // Must trap null return value here in production code!
      node->val = val;
      return node;
    }
    
    // Append given node to the tail of a queue.
    void append_node(QUEUE *queue, NODE *node)
    {
      NODE *tail = *queue;
      if (tail) {
        node->next = tail->next;
        tail->next = node;
      }
      else {
        node->next = node;
      }
      *queue = node;
    }
    
    // Concatenate the second queue onto the tail of the first. 
    // First queue is changed (because it's a pointer to a tail node).
    void cat(QUEUE *a, QUEUE b_tail)
    {
      NODE *a_tail, *a_head;
    
      if (b_tail == NULL) return;
      a_tail = *a;
      if (a_tail) {
        a_head = a_tail->next;
        a_tail->next = b_tail->next;
        b_tail->next = a_head;
      }
      *a = b_tail;
    }
    // Sort code above goes here if you're compiling it.
    // And test main goes here.
    

    一个小测试主:

    int main(void)
    {
      int i;
      unsigned data[] = { 98, 111, 42, 1111, 21 , 997, 0, 99999, 20903};
    
      // Make a queue from data.
      QUEUE a = NULL;
      for (i = 0; i < sizeof data / sizeof data[0]; i++)
        append_node(&a, new_node(data[i]));
    
      sort(&a);
    
      // Print the circular list.
      NODE *p = a;
      do {
        p = p->next;
        printf("%u\n", p->val);
      } while (p != a);
    
      return 0;
    }
    

答案 2 :(得分:0)

免责声明:我之前没有实现基数排序或测试下面的代码。我会把它留给你作为练习。

当你发现自己不止一次地复制粘贴时停下来思考:必须有一种模式。

你的switch语句有很多复制粘贴。在case 1:中,您有一行:

queue[1]->frontp = queue[0]->rearp;

我猜它应该是:

queue[1]->frontp = queue[1]->rearp;

如果你重新考虑了这段代码,你可能会更容易看到这个?

如何用以下内容替换整个switch语句:

int leastSignificantDigit = curNum%10;

if(queue[leastSignificantDigit]->size == 0){
    queue[leastSignificantDigit]->rearp = (queue_node_t *)malloc (sizeof(queue_node_t));
    queue[leastSignificantDigit]->frontp = queue[leastSignificantDigit]->rearp;
} else {
    queue[leastSignificantDigit]->rearp->restp = (queue_node_t *)malloc(sizeof(queue_node_t));
    queue[leastSignificantDigit]->rearp = queue[leastSignificantDigit]->rearp->restp;
}
++(queue[leastSignificantDigit]->size);
queue[leastSignificantDigit]->rearp->element = curNodep->element;
queue[leastSignificantDigit]->rearp->restp = NULL;
radixSort(curNodep->restp, queue, size);

答案 3 :(得分:0)

我在第一个代码示例中看到的问题是

curNum = curNodep-&gt; element.key

curNum始终是完整的数字,而switch语句总是这样 curNum%10 ,这只测试最后一位数。

在你的递归解决方案中(递归不是问题)你必须传递一个参数来知道它必须处理的数字。

我知道这种技术是沉浸式的。

如果您看到在答案结尾处放置的样本,您可以看到最后一个数字是orderer,您可以更改输入样本以更好地了解这一点。使用较小的最后一个数字添加大数字,例如'901',查看结果。

抱歉我的英文......