我的数据看起来像这样
Study NDF ADF CP Eeff
1 35.8 24.4 18.6 34.83181476
1 35.8 24.4 18.6 33.76824264
1 35.8 24.4 18.6 32.67390287
1 35.8 24.4 18.6 33.05520666
2 39.7 23.4 16.1 33.19730252
2 39.4 22.9 16.3 34.04709188
3 28.9 20.6 18.7 33.22501606
3 27.1 18.9 17.9 33.80766289
当然,我有80行像这样。
我使用lme
函数运行混合模型(Study as random effect),如下所示:
fm1<-lme(Eeff~NDF+ADF+CP,random=~1|Study, data=na.omit(phuong))
我得到了这个结果:
Fixed effects: Ratio ~ ADF + CP + FCM + DMI + DIM
Value Std.Error DF t-value p-value
(Intercept) 3.1199808 0.16237303 158 19.214896 0.0000
ADF -0.0265626 0.00406990 158 -6.526603 0.0000
CP -0.0534021 0.00539108 158 -9.905636 0.0000
FCM -0.0149314 0.00353524 158 -4.223598 0.0000
DMI 0.0072318 0.00498779 158 1.449894 0.1491
DIM -0.0008994 0.00019408 158 -4.634076 0.0000
Correlation:
(Intr) ADF CP FCM DMI
ADF -0.628
CP -0.515 0.089
FCM -0.299 0.269 -0.203
DMI -0.229 -0.145 0.083 -0.624
DIM -0.113 0.127 -0.061 0.010 -0.047
这些结果显示了截距是随机的但斜率是固定的情况。我如何看待我的80拦截,例如,当我将研究用作固定效果时,如下所示:
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0021083 0.0102536 -0.206 0.837351
ADF 0.0005248 0.0002962 1.772 0.078313 .
CP 0.0021131 0.0003277 6.448 1.26e-09 ***
factor(Study)2 0.0057274 0.0038709 1.480 0.140933
factor(Study)3 0.0117722 0.0035262 3.338 0.001046 **
factor(Study)4 0.0091049 0.0043227 2.106 0.036730 *
factor(Study)6 0.0149733 0.0045345 3.302 0.001182 **
factor(Study)7 0.0065518 0.0036837 1.779 0.077196 .
factor(Study)8 0.0066134 0.0035371 1.870 0.063337 .
factor(Study)9 0.0086758 0.0036641 2.368 0.019083 *
factor(Study)10 0.0105657 0.0041296 2.559 0.011434 *
factor(Study)11 0.0083694 0.0040194 2.082 0.038900 *
factor(Study)16 0.0171258 0.0028962 5.913 1.95e-08 ***
factor(Study)18 0.0019277 0.0042300 0.456 0.649209
factor(Study)20 0.0172469 0.0040412 4.268 3.36e-05 ***
factor(Study)23 0.0132676 0.0031658 4.191 4.57e-05 ***
factor(Study)24 0.0063313 0.0031519 2.009 0.046236 *
factor(Study)25 0.0050929 0.0039135 1.301 0.194989
非常感谢, PHUONG
答案 0 :(得分:3)
您没有向我们提供可重现的问题,但答案是使用coef
,例如:
> library(nlme)
> fm1 <- lme(distance~age,random=~1|Subject,data=Orthodont)
> coef(fm1)
(Intercept) age
M16 15.84314 0.6601852
M05 15.84314 0.6601852
M02 16.17959 0.6601852
M11 16.40389 0.6601852
M07 16.51604 0.6601852
M08 16.62819 0.6601852
M03 16.96464 0.6601852
[snip]
fixef()
来获得固定效果系数ranef()
来获得随机效应(即每个人与固定系数的偏差Orthodont
中的lme
示例实际上使用随机斜率(+截距)模型;在这里我已经拟合了一个随机拦截模型,因此每个人的估计斜率(age
参数)是相同的