我的数据集中包含不恰当的句子。我想找到一种方法来删除一些空格。
我从一个句子开始,我将其转换为单词数据框:
> word5 <- "hotter the doghou se would be bec ause the co lor was diffe rent"
> abc1 <- data.frame(filler1 = 1,words1=factor(unlist(strsplit(word5, split=" "))))
> abc1
filler1 words1
1 1 hotter
2 1 the
3 1 doghou
4 1 se
5 1 would
6 1 be
7 1 bec
8 1 ause
9 1 the
10 1 co
11 1 lor
12 1 was
13 1 diffe
14 1 rent
接下来,我使用以下代码尝试拼写检查并组合在单词之前或之后组合单词的单词:
abc2 <- abc1
i <- 1
while(i < nrow(abc1)){
print(abc2)
if(nrow(aspell(abc1$words1[i])) == 0){
print(paste(i,"Words OK",sep=" | "));flush.console()
i <- i + 1
}
else{
if(nrow(aspell(abc1$words1[i])) > 0 & i != 1){
preWord1 <- abc1$words1[i-1]
postWord1 <- abc1$words1[i+1]
badWord1 <- abc1$words1[i]
newWord1 <- factor(paste(preWord1,badWord1,sep=""))
newWord2 <- factor(paste(badWord1,postWord1,sep=""))
if(nrow(aspell(newWord1)) == 0 & nrow(aspell(newWord2)) != 0){
abc2[i,"words1"] <-as.character(newWord1)
abc2 <- abc2[-c(i+1),]
print(paste(i,"word1",sep=" | "));flush.console()
i <- i + 1
}
if(nrow(aspell(newWord1)) != 0 & nrow(aspell(newWord2)) == 0){
abc2[i ,"words1"] <-as.character(newWord2)
abc2 <- abc2[-c(i-1),]
print(paste(i,"word2",sep=" | "));flush.console()
i <- i + 1
}
}
}
}
在玩了一段时间后,我得出的结论是我需要某种类型的迭代器,但不确定如何在R中实现它。有什么建议吗?
答案 0 :(得分:10)
注意:我提出了一个完全不同的,更好的解决方案,因为它避开了以前解决方案的所有缺点。但我仍然希望保留原有的解决方案。因此,我将其添加为新答案,如果我做错了,请纠正我。
在这种方法中,我重新格式化了数据集。基础是我称之为wordpair对象。例如:
> word5
[1] "hotter the doghou se would be bec ause the col or was diffe rent"
看起来像:
> abc1_pairs
word1 word2
1 hotter the
2 the doghou
3 doghou se
4 se would
5 would be
6 be bec
7 bec ause
8 ause the
9 the col
10 col or
11 or was
12 was diffe
13 diffe rent
接下来,我们遍历wordpairs并查看它们本身是否是有效单词,递归执行此操作直到找不到有效的新单词(请注意,此帖子的底部列出了一些其他函数):
# Recursively delete wordpairs which lead to a correct word
merge_wordpairs = function(wordpairs) {
require(plyr)
merged_pairs = as.character(mlply(wordpairs, merge_word))
correct_words_idxs = which(sapply(merged_pairs, word_correct))
if(length(correct_words_idxs) == 0) {
return(wordpairs)
} else {
message(sprintf("Number of words about to be merged in this pass: %s", length(correct_words_idxs)))
for(idx in correct_words_idxs) {
wordpairs = merge_specific_pair(wordpairs, idx, delete_pair = FALSE)
}
return(merge_wordpairs(wordpairs[-correct_words_idxs,])) # recursive call
}
}
应用于示例数据集,这将导致:
> word5 <- "hotter the doghou se would be bec ause the col or was diffe rent"
> abc1 = strsplit(word5, split = " ")[[1]]
> abc1_pairs = wordlist2wordpairs(abc1)
> abc1_pairs
word1 word2
1 hotter the
2 the doghou
3 doghou se
4 se would
5 would be
6 be bec
7 bec ause
8 ause the
9 the col
10 col or
11 or was
12 was diffe
13 diffe rent
> abc1_merged_pairs = merge_wordpairs(abc1_pairs)
Number of words about to be merged in this pass: 4
> merged_sentence = paste(wordpairs2wordlist(abc1_merged_pairs), collapse = " ")
> c(word5, merged_sentence)
[1] "hotter the doghou se would be bec ause the col or was diffe rent"
[2] "hotter the doghouse would be because the color was different"
所需的其他功能:
# A bunch of functions
# Data transformation
wordlist2wordpairs = function(word_list) {
require(plyr)
wordpairs = ldply(seq_len(length(word_list) - 1),
function(idx)
return(c(word_list[idx],
word_list[idx+1])))
names(wordpairs) = c("word1", "word2")
return(wordpairs)
}
wordpairs2wordlist = function(wordpairs) {
return(c(wordpairs[[1]], wordpairs[[2]][nrow(wordpairs)]))
}
# Some checking functions
# Is the word correct?
word_correct = function(word) return(nrow(aspell(factor(word))) == 0)
# Merge two words
merge_word = function(word1, word2) return(paste(word1, word2, sep = ""))
# Merge a specific pair, option to postpone deletion of pair
merge_specific_pair = function(wordpairs, idx, delete_pair = TRUE) {
# merge pair into word
merged_word = do.call("merge_word", wordpairs[idx,])
# assign the pair to the idx above
if(!(idx == 1)) wordpairs[idx - 1, "word2"] = merged_word
if(!(idx == nrow(wordpairs))) wordpairs[idx + 1, "word1"] = merged_word
# assign the pair to the index below (if not last one)
if(delete_pair) wordpairs = wordpairs[-idx,]
return(wordpairs)
}
答案 1 :(得分:3)
你可以做的是使用递归。下面的代码对您的示例进行了略微修改。它检查所有单词是否正确,如果是,则返回单词列表。如果没有,它会尝试将单词与前面的单词以及单词后面的单词组合在一起。如果前一个单词的合并是正确的,则会导致合并,看起来像paste(word_before, word, word_after)
。尝试合并后,在新单词列表上调用合并单词的功能。这种递归一直持续到没有错误的单词为止。
# Wrap the spell checking in a function, makes your code much more readable
word_correct = function(word) return(nrow(aspell(factor(word))) == 0)
# Merge two words
merge_word = function(word1, word2) return(paste(word1, word2, sep = ""))
# Merge two words and replace in list
merge_words_in_list = function(word_list, idx1, idx2) {
word_list[idx1] = merge_word(word_list[idx1], word_list[idx2])
return(word_list[-idx2])
}
# Function that recursively combines words
combine_words = function(word_list) {
message("Current sentence: ", paste(word_list, collapse = " "))
words_ok = sapply(word_list, word_correct)
if(all(words_ok)) {
return(word_list)
} else {
first_wrong_word = which(!words_ok)[1]
combination_before = merge_word(word_list[first_wrong_word],
word_list[first_wrong_word-1])
if(word_correct(combination_before)) {
word_list = merge_words_in_list(word_list, first_wrong_word-1,
first_wrong_word)
}
combination_after = merge_word(word_list[first_wrong_word],
word_list[first_wrong_word+1])
if(word_correct(combination_after)) {
word_list = merge_words_in_list(word_list, first_wrong_word,
first_wrong_word+1)
}
return(combine_words(word_list)) # Recursive call
}
}
将这组函数应用于(略微修改)的句子版本:
word5 <- "hotter the doghou se would be bec ause the col or was diffe rent"
abc1 = strsplit(word5, split = " ")[[1]]
combine_words(abc1)
Current sentence: hotter the doghou se would be bec ause the col or was diffe rent
Current sentence: hotter the doghouse would be bec ause the col or was diffe rent
Current sentence: hotter the doghouse would be because the col or was diffe rent
Current sentence: hotter the doghouse would be because the col or was different
一些问题:
combination_before
和combination_after
都无效,程序将进入无限递归。程序仅在所有单词有效时停止。 aspell
评判为好词,而你可能想要合并。这带来了新的挑战:在这种情况下,合并是显而易见的,但在大型数据集中,如何组合一组本身正确的单词可能并不明显。但是,尽管如此,我认为这个例子很好地说明了一种递归方法。