此性能测试错误或系统缓存是否具有出色的性能?
这是我的结果:
[13]交互次数100000:63毫秒
[14]交互次数100000:139毫秒
[12]交互次数100000:47毫秒
[15]交互次数100000:44毫秒
测试结束。
硬件:
x86 Family 6 Model 23 Stepping GenuineIntel~2992 Mhz 3.327 MB,5.1.2600 Service Pack 3
using System;
using System.Collections.Generic;
using System.Runtime.Caching;
using System.Diagnostics;
using System.Threading;
namespace CacheNet40
{
public class CacheTest
{
private ObjectCache cache;
public CacheTest()
{
cache = MemoryCache.Default;
}
public void AddItem(CacheItem item, double span)
{
CacheItemPolicy cp = new CacheItemPolicy();
cp.SlidingExpiration.Add(TimeSpan.FromMinutes(span));
cache.Add(item, cp);
}
public Object GetItem(string key)
{
return cache.Get(key);
}
}
class Program
{
private static CacheTest Cache = new CacheTest();
private static string allowedChars = "abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNOPQRSTUVWXYZ0123456789!@$?_-";
private static int counter = 0;
private static readonly object locker = new object();
static string CreateRandomString(int passwordLength, int idx)
{
char[] chars = new char[passwordLength];
Random rd = new Random((int)DateTime.Now.Ticks + idx);
for (int i = 0; i < passwordLength; i++)
{
chars[i] = allowedChars[rd.Next(0, allowedChars.Length)];
}
return new string(chars);
}
private static void CacheAccessTes()
{
int span = 5;
string key;
string data;
int itens = 1000;
int interactions = 100000;
int cont = 0;
int index = 0;
List<string> keys = new List<string>();
lock (locker)
{
counter++;
}
cont = itens;
//populates it with data in the cache
do
{
key = CreateRandomString(127, Thread.CurrentThread.ManagedThreadId + cont);
keys.Add(key);
data = CreateRandomString(156000, Thread.CurrentThread.ManagedThreadId + cont + 1);
CacheItem ci = new CacheItem(key, data);
Cache.AddItem(ci, span);
cont--;
}
while (cont > 0);
cont = interactions;
index = 0;
//test readings
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
do
{
Object ci = Cache.GetItem(keys[index]);
ci = null;
index++;
if (index == itens)
{
index = 0;
}
cont--;
}
while (cont > 0);
stopWatch.Stop();
lock (locker)
{
counter--;
}
string outstring = String.Format("[{0}] number of interactions {1} : {2} milliseconds", Thread.CurrentThread.ManagedThreadId, interactions, stopWatch.ElapsedMilliseconds );
Console.WriteLine(outstring);
}
static void Main(string[] args)
{
for (int threads = 0; threads < 4; threads++)
{
Thread thread = new Thread(new ThreadStart(CacheAccessTes));
thread.Start();
}
Thread.Sleep(1000);
while (true)
{
lock (locker)
{
if (counter == 0) break;
}
Thread.Sleep(100);
}
Console.WriteLine("End of test.");
Console.ReadLine();
}
}
}
答案 0 :(得分:5)
看起来不错。虽然低于一秒的时间不是很可靠;你可能遇到了垃圾收集,你的电脑可能会做一些其他事情,第一次JIT编译等。
所以增加点数。这也应该使每个线程的结果更加接近。
我上周做的一些测试使得每秒800万次迭代(不是很多,但仍然是)单线程。所以,是的,PC现在很快; - )
答案 1 :(得分:5)
问题是StopWatch类不能在多核机器上使用! (我假设你有一个多核CPU)当一个线程从一个核心移动到另一个核心时,BIOS处理该计数器的方式(甚至一个线程应用程序跳转核心!)。
修改强>
退房 - http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx - 特别是备注部分。
还有一个stackoverflow帖子 - Multicore and thread aware .Net stopwatch?。
结束修改
我已经搜索了高低不同的最佳方法来衡量应用程序性能,而我提出的最可靠的是DateTime.UtcNow。获取开始和结束时间,然后区分它们。你必须循环你的代码足以超越低精度,但我遇到的其他方法没有提供更多可靠准确性。
答案 2 :(得分:3)
在我的机器上,每个GetItem调用约40毫秒或400毫秒。
我在调试器下跟踪调用,在我的I7机器上每个GetItem大约有2000个指令。这比我预期的要多。
答案 3 :(得分:3)
我刚刚在网上搜索了有关MemoryCache
性能的信息,却偶然发现了这个问题。我问自己为什么不使用适当的基准测试库,所以最终我变得非常懒惰(所有优秀的程序员都应该:-)来制定自己的基准测试,并使用了令人难以置信的BenchmarkDotNet库来检查性能如何(或不是)此类的行为。
首先获得结果
BenchmarkDotNet=v0.11.5, OS=Windows 10.0.17134.706 (1803/April2018Update/Redstone4)
Intel Core i5-8250U CPU 1.60GHz (Kaby Lake R), 1 CPU, 8 logical and 4 physical cores
Frequency=1757813 Hz, Resolution=568.8887 ns, Timer=TSC
[Host] : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3394.0
DefaultJob : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3394.0
| Method | N | Mean | Error | StdDev |
|------------------------------- |------ |----------:|----------:|----------:|
| FindDadosEmpInCache | 30000 | 231.40 ns | 0.4435 ns | 0.3703 ns |
| FindDataAtTheEnd | 30000 | 429.90 ns | 1.1490 ns | 1.0186 ns |
| FindDataInDictionary | 30000 | 24.09 ns | 0.2244 ns | 0.2099 ns |
| FindDataInConcurrentDictionary | 30000 | 29.66 ns | 0.0990 ns | 0.0926 ns |
| FindDataInHashset | 30000 | 16.25 ns | 0.0077 ns | 0.0065 ns |
现在有一些解释...
我最感兴趣的是查看MemoryCache
与具有成千上万个条目的哈希表(Dictionary
,Hashset
...)相比有多快,以及最坏情况下的线性搜索这样的“长”名单。因此,我添加了一些其他测试,并意识到虽然MemoryCache
的速度不如简单列表或并发列表快,但速度仍处于纳秒级。甚至不到一毫秒就可以检索到30,000个长缓存项列表中的项。
为了公平起见,MemoryCache
比简单列表要多得多,因为它必须控制并发性,项目到期/逐出等。我相信它对于所有工作负载都足够快,但是如果您不这样做的话需要其附加功能,例如逐出策略,您最好坚持使用更简单的哈希列表实现。
另一方面,由于它比哈希查找“慢”一个数量级,因此可能还有改进的空间。我猜设计师认为它已经足够好了,我该与谁不同意DOTNET工程师? :-)
以下是基准程序的源代码:
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Caching;
namespace TestListPerformance
{
class Program
{
static void Main(string[] args) {
var summary = BenchmarkRunner.Run<BenchmarkMemoryCache>();
}
}
public class BenchmarkMemoryCache
{
[Params(30000)]
public int N { get; set; }
public string FindStr;
private IList<DadosEmp> data;
private Dictionary<string, DadosEmp> dict;
private ConcurrentDictionary<string, DadosEmp> concurrentDict;
private HashSet<DadosEmp> hashset;
private DadosEmp last;
[GlobalSetup]
public void BuildData() {
FindStr = N.ToString();
data = new List<DadosEmp>(N);
dict = new Dictionary<string, DadosEmp>(N);
concurrentDict = new ConcurrentDictionary<string, DadosEmp>();
hashset = new HashSet<DadosEmp>();
for (int i = 0; i <= N; i++) {
DadosEmp d;
data.Add(d = new DadosEmp {
Identificacao = i,
Pis = i * 100,
NumCartao = i * 1000,
Nome = "Nome " + i.ToString(),
});
MemoryCache.Default.Add(i.ToString(), d,
new CacheItemPolicy { SlidingExpiration = TimeSpan.FromMinutes(30) });
dict.Add(i.ToString(), d);
concurrentDict.TryAdd(i.ToString(), d);
hashset.Add(d);
last = d;
}
}
[Benchmark]
public DadosEmp FindDadosEmpInCache() {
var f = (DadosEmp)MemoryCache.Default.Get(FindStr);
return f;
}
[Benchmark]
public DadosEmp FindDataAtTheEnd() {
var f = data.FirstOrDefault(e => e.NumCartao == N || e.Pis == N || e.Identificacao == N);
return f;
}
[Benchmark]
public DadosEmp FindDataInDictionary() {
var f = dict[FindStr];
return f;
}
[Benchmark]
public DadosEmp FindDataInConcurrentDictionary() {
var f = concurrentDict[FindStr];
return f;
}
[Benchmark]
public bool FindDataInHashset() {
return hashset.Contains(last);
}
}
public class DadosEmp : IEquatable<DadosEmp>
{
public const string BIO_EXCLUSAO = "xbio";
public DadosEmp() {
Biometrias = new List<string>();
}
public long Identificacao { get; set; }
public long Pis { get; set; }
public long NumCartao { get; set; }
public string Nome { get; set; }
public int VersaoBio { get; set; }
public string Unidade { get; set; }
public IList<string> Biometrias { get; set; }
public string Biometria { get; set; }
public bool ExcluirBiometria { get { return Biometria == BIO_EXCLUSAO; } }
public DateTime DataEnvioRep { get; set; }
public string SenhaTeclado { get; set; }
public bool ExigeAutorizacaoSaida { get; set; }
public bool BioRepPendente { get; set; }
public override bool Equals(object obj) {
DadosEmp e = obj as DadosEmp;
if (ReferenceEquals(e, null))
return false;
return Equals(e);
}
public bool Equals(DadosEmp e) {
if (ReferenceEquals(e, null))
return false;
return e.Pis == this.Pis;
}
public override int GetHashCode() {
return Pis.GetHashCode();
}
public override string ToString() {
return string.Format("{0} ({1} - {2})", Nome, Pis, Identificacao);
}
}
}