我正在尝试编写一个将2d-ndarray映射到2d-ndarray的函数。输入数组的行可以独立处理,输入行和输出行之间应该有一对一的对应关系。对于输入的每一行,应计算行的给定顺序的多项式展开(有关示例,请参见docstring)。目前的实施工作;但是它需要在“powerMatrix”中对行和行的重复进行显式循环。通过一次调用numpy.power可以获得相同的结果吗?顺便说一句:结果行中条目的顺序对我来说无关紧要。
import numpy
def polynomialFeatures(x, order):
""" Generate polynomial features of given order for data x.
For each row of ndarray x, the polynomial expansions are computed, i.e
for row [x1, x2] and order 2, the following row of the result matrix is
computed: [1, x1, x1**2, x2, x1*x2, x1**2*x2, x2**2, x1*x2**2, x1**2*x2**2]
Parameters
----------
x : array-like
2-D array; for each of its rows, the polynomial features are created
order : int
The order of the polynomial features
Returns
-------
out : ndarray
2-D array of shape (x.shape[0], (order+1)**x.shape[1]) containing the
polynomial features computed for the rows of the array x
Examples
--------
>>> polynomialFeatures([[1, 2, 3], [-1, -2, -3]], 2)
array([[ 1 3 9 2 6 18 4 12 36 1 3 9 2 6 18 4 12
36 1 3 9 2 6 18 4 12 36]
[ 1 -3 9 -2 6 -18 4 -12 36 -1 3 -9 2 -6 18 -4 12
-36 1 -3 9 -2 6 -18 4 -12 36]])
"""
x = numpy.asarray(x)
# TODO: Avoid duplication of rows
powerMatrix = numpy.array([range(order+1)] * x.shape[1]).T
# TODO: Avoid explicit loop, and use numpy's broadcasting
F = []
for i in range(x.shape[0]):
X = numpy.power(x[i], powerMatrix).T
F.append(numpy.multiply.reduce(cartesian(X), axis=1))
return numpy.array(F)
print numpy.all(polynomialFeatures([[1, 2, 3], [-1, -2, -3]], 2) ==
numpy.array([[1, 3, 9, 2, 6, 18, 4, 12, 36, 1,
3, 9, 2, 6, 18, 4, 12, 36, 1, 3,
9, 2, 6, 18, 4, 12, 36],
[1, -3, 9, -2, 6, -18, 4, -12, 36, -1,
3, -9, 2, -6, 18, -4, 12, -36, 1, -3,
9, -2, 6, -18, 4, -12, 36]]))
谢谢, 扬
编辑:缺少的函数cartesian在此处定义:Using numpy to build an array of all combinations of two arrays
答案 0 :(得分:3)
基本思想是将尺寸(在您的情况下,尺寸0,行数)与“不在路上”的计算无关地移动到更高的维度,然后自动通过它进行广播。
我不确定您的cartesian
方法正在做什么,但这是一个使用np.indices
生成X
矩阵上的索引元组的解决方案:
import numpy as np
def polynomial_features(x, order):
x = np.asarray(x).T[np.newaxis]
n = x.shape[1]
power_matrix = np.tile(np.arange(order + 1), (n, 1)).T[..., np.newaxis]
X = np.power(x, power_matrix)
I = np.indices((order + 1, ) * n).reshape((n, (order + 1) ** n)).T
F = np.product(np.diagonal(X[I], 0, 1, 2), axis=2)
return F.T