这是我的小数据集。
Indvidual <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
Parent1 <- c(NA, NA, "A", "A", "C", "C", "C", "E", "A", NA)
Parent2 <- c(NA, NA, "B", "C", "D", "D", "D", NA, "D", NA)
mydf <- data.frame (Indvidual, Parent1, Parent2)
Indvidual Parent1 Parent2
1 A <NA> <NA>
2 B <NA> <NA>
3 C A B
4 D A C
5 E C D
6 F C D
7 G C D
8 H E <NA>
9 I A D
10 J <NA> <NA>
考虑一下有两个或一个已知父母的人。我需要通过计算父母的分数来比较和减少分数。
规则是父母之一(parent1或parent2列中的姓名)是已知的(不是NA),将获得1个额外分数加上他们父母的分数。如果有两个父母知道,将考虑最高得分者。
以下是一个例子:
Individual "A", has both parents unknown so will get score 0
Indiviudal "C", has both parents known (i.e. A, B)
will get 0 score (maximum of their parents)
加1(因为它有父母之一)
因此,上述数据帧的预期输出(有说明)是:
Indvidual Parent1 Parent2 Scores Explanation
1 A <NA> <NA> 0 0 (Max of parent Scores NA) + 0 (neither parent knwon)
2 B <NA> <NA> 0 0 (Max of parent Scores NA) + 0 (neither parent knwon)
3 C A B 1 0 (Max of parent Scores) + 1 (either parent knwon)
4 D A C 2 1 (Max of parent scores) + 1 (either parent knwon)
5 E C D 3 2 (Max of parent scores) + 1 (either parent knwon)
6 F C D 3 2 (Max of parent scores) + 1 (either parent knwon)
7 G C D 3 2 (Max of parent scores) + 1 (either parent knwon)
8 H E <NA> 4 3 (Max of parent scores) + 1 (either parent knwon)
9 I A D 3 2 (Max of parent scores) + 1 (either parent knwon)
10 J <NA> <NA> 0 0 (Max of parent scores NA) + 0 (neither parent knwon)
说明:当循环继续时,它会考虑已经计算的分数。 最高父母分数
编辑:基于追逐的问题
例如:
Individual C has two parents A and B, each of which has Scores calculated as 0 and 0
(in row 1 and 2 and column Scores), means that max (c(0,0)) will be 0
Individual E has parents C and D, whose scores in Scores column is (in row 3 and 4),
1 and 2, respectively. So maximum of max(c(1,2)) will be 2.
答案 0 :(得分:2)
使用plyr
和递归参数的示例
library(plyr)
Indvidual <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
Parent1 <- c(NA, NA, "A", "A", "C", "C", "C", "E", "A", NA)
Parent2 <- c(NA, NA, "B", "C", "D", "D", "D", NA, "D", NA)
mydf <- data.frame (Indvidual, Parent1, Parent2)
scor.fun<-function(x,mydf){
Explanation<-0
P1<-as.character(x$Parent1)
P2<-as.character(x$Parent2)
score<-as.numeric(!(is.na(P1)||is.na(P1)))
if(!(is.na(P1)||is.na(P2))){
Explanation<-max(scor.fun(subset(mydf,Indvidual==P1),mydf)[1],scor.fun(subset(mydf,Indvidual==P2),mydf)[1])
score<-score+Explanation
}else{
Explanation<-ifelse(is.na(P1),0,scor.fun(subset(mydf,Indvidual==P1),mydf)[1])
Explanation<-max(Explanation,ifelse(is.na(P2),0,scor.fun(subset(mydf,Indvidual==P2),mydf)[1]))
score<-score+Explanation
}
c(score,Explanation)
}
adply(mydf,1,scor.fun,mydf)
对于大数据帧的递归,可能不是最好的想法。
答案 1 :(得分:1)
Individual <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
Parent1 <- c(NA, NA, "A", "A", "C", "C", "C", "E", "A", NA)
Parent2 <- c(NA, NA, "B", "C", "D", "D", "D", NA, "D", NA)
mydf <- data.frame (Individual, Parent1, Parent2, stringsAsFactors = FALSE)
mydf$Scores <- NA
mydf$Scores[rowSums(is.na(mydf[, c("Parent1", "Parent2")])) == 2] <- 0
while(any(is.na(mydf$Scores))){
KnownScores <- mydf[!is.na(mydf$Scores), c(1, 4)]
ToCalculate <- mydf[
mydf$Parent1 %in% c(KnownScores$Individual, NA) &
mydf$Parent2 %in% c(KnownScores$Individual, NA) &
is.na(mydf$Scores),
-4]
ToCalculate$Score <- apply(
merge(
merge(
ToCalculate,
KnownScores,
by.x = "Parent1",
by.y = "Individual",
all.x = TRUE
),
KnownScores,
by.x = "Parent2",
by.y = "Individual",
all.x = TRUE
)[, 4:5],
1,
max,
na.rm = TRUE) + 1
mydf <- merge(mydf, ToCalculate[, c(1, 4)], all.x = TRUE)
mydf$Scores[!is.na(mydf$Score)] <- mydf$Score[!is.na(mydf$Score)]
mydf$Score <- NULL
}