对于赋值,我们被要求创建一个返回反函数的函数。基本问题是从平方函数创建平方根函数。我想出了一个使用二进制搜索的解决方案和另一个使用牛顿方法的解决方案。我的解决方案似乎适用于cube-root和square-root但不适用于log10。以下是我的解决方案:
#Binary Search
def inverse1(f, delta=1e-8):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def f_1(y):
low, high = 0, float(y)
last, mid = 0, high/2
while abs(mid-last) > delta:
if f(mid) < y:
low = mid
else:
high = mid
last, mid = mid, (low + high)/2
return mid
return f_1
#Newton's Method
def inverse(f, delta=1e-5):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def derivative(func): return lambda y: (func(y+delta) - func(y)) / delta
def root(y): return lambda x: f(x) - y
def newton(y, iters=15):
guess = float(y)/2
rootfunc = root(y)
derifunc = derivative(rootfunc)
for _ in range(iters):
guess = guess - (rootfunc(guess)/derifunc(guess))
return guess
return newton
无论使用哪种方法,当我在教授的测试函数中得到log10()的输入n = 10000时,我得到这个错误:(例外:当我使用牛顿的方法函数时,log10()是关闭的,这种二元搜索方法相对准确,直到达到输入阈值,无论哪种方式,当n = 10000时,两种解决方案都会抛出此错误。
2: sqrt = 1.4142136 ( 1.4142136 actual); 0.0000 diff; ok
2: log = 0.3010300 ( 0.3010300 actual); 0.0000 diff; ok
2: cbrt = 1.2599211 ( 1.2599210 actual); 0.0000 diff; ok
4: sqrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
4: log = 0.6020600 ( 0.6020600 actual); 0.0000 diff; ok
4: cbrt = 1.5874011 ( 1.5874011 actual); 0.0000 diff; ok
6: sqrt = 2.4494897 ( 2.4494897 actual); 0.0000 diff; ok
6: log = 0.7781513 ( 0.7781513 actual); 0.0000 diff; ok
6: cbrt = 1.8171206 ( 1.8171206 actual); 0.0000 diff; ok
8: sqrt = 2.8284271 ( 2.8284271 actual); 0.0000 diff; ok
8: log = 0.9030900 ( 0.9030900 actual); 0.0000 diff; ok
8: cbrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
10: sqrt = 3.1622777 ( 3.1622777 actual); 0.0000 diff; ok
10: log = 1.0000000 ( 1.0000000 actual); 0.0000 diff; ok
10: cbrt = 2.1544347 ( 2.1544347 actual); 0.0000 diff; ok
99: sqrt = 9.9498744 ( 9.9498744 actual); 0.0000 diff; ok
99: log = 1.9956352 ( 1.9956352 actual); 0.0000 diff; ok
99: cbrt = 4.6260650 ( 4.6260650 actual); 0.0000 diff; ok
100: sqrt = 10.0000000 ( 10.0000000 actual); 0.0000 diff; ok
100: log = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
100: cbrt = 4.6415888 ( 4.6415888 actual); 0.0000 diff; ok
101: sqrt = 10.0498756 ( 10.0498756 actual); 0.0000 diff; ok
101: log = 2.0043214 ( 2.0043214 actual); 0.0000 diff; ok
101: cbrt = 4.6570095 ( 4.6570095 actual); 0.0000 diff; ok
1000: sqrt = 31.6227766 ( 31.6227766 actual); 0.0000 diff; ok
Traceback (most recent call last):
File "/CS212/Unit3HW.py", line 296, in <module>
print test()
File "/CS212/Unit3HW.py", line 286, in test
test1(n, 'log', log10(n), math.log10(n))
File "/CS212/Unit3HW.py", line 237, in f_1
if f(mid) < y:
File "/CS212/Unit3HW.py", line 270, in power10
def power10(x): return 10**x
OverflowError: (34, 'Result too large')
这是测试功能:
def test():
import math
nums = [2,4,6,8,10,99,100,101,1000,10000, 20000, 40000, 100000000]
for n in nums:
test1(n, 'sqrt', sqrt(n), math.sqrt(n))
test1(n, 'log', log10(n), math.log10(n))
test1(n, 'cbrt', cbrt(n), n**(1./3.))
def test1(n, name, value, expected):
diff = abs(value - expected)
print '%6g: %s = %13.7f (%13.7f actual); %.4f diff; %s' %(
n, name, value, expected, diff,
('ok' if diff < .002 else '**** BAD ****'))
以下是测试的设置方法:
#Using inverse() or inverse1() depending on desired method
def power10(x): return 10**x
def square(x): return x*x
log10 = inverse(power10)
def cube(x): return x*x*x
sqrt = inverse(square)
cbrt = inverse(cube)
print test()
发布的其他解决方案似乎在运行全套测试输入时没有问题(我已经尝试不查看已发布的解决方案)。对这个错误的任何见解?
似乎共识是数字的大小,但是,我的教授的代码似乎适用于所有情况:
#Prof's code:
def inverse2(f, delta=1/1024.):
def f_1(y):
lo, hi = find_bounds(f, y)
return binary_search(f, y, lo, hi, delta)
return f_1
def find_bounds(f, y):
x = 1
while f(x) < y:
x = x * 2
lo = 0 if (x ==1) else x/2
return lo, x
def binary_search(f, y, lo, hi, delta):
while lo <= hi:
x = (lo + hi) / 2
if f(x) < y:
lo = x + delta
elif f(x) > y:
hi = x - delta
else:
return x;
return hi if (f(hi) - y < y - f(lo)) else lo
log10 = inverse2(power10)
sqrt = inverse2(square)
cbrt = inverse2(cube)
print test()
结果:
2: sqrt = 1.4134903 ( 1.4142136 actual); 0.0007 diff; ok
2: log = 0.3000984 ( 0.3010300 actual); 0.0009 diff; ok
2: cbrt = 1.2590427 ( 1.2599210 actual); 0.0009 diff; ok
4: sqrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
4: log = 0.6011734 ( 0.6020600 actual); 0.0009 diff; ok
4: cbrt = 1.5865107 ( 1.5874011 actual); 0.0009 diff; ok
6: sqrt = 2.4486818 ( 2.4494897 actual); 0.0008 diff; ok
6: log = 0.7790794 ( 0.7781513 actual); 0.0009 diff; ok
6: cbrt = 1.8162270 ( 1.8171206 actual); 0.0009 diff; ok
8: sqrt = 2.8289337 ( 2.8284271 actual); 0.0005 diff; ok
8: log = 0.9022484 ( 0.9030900 actual); 0.0008 diff; ok
8: cbrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
10: sqrt = 3.1632442 ( 3.1622777 actual); 0.0010 diff; ok
10: log = 1.0009756 ( 1.0000000 actual); 0.0010 diff; ok
10: cbrt = 2.1534719 ( 2.1544347 actual); 0.0010 diff; ok
99: sqrt = 9.9506714 ( 9.9498744 actual); 0.0008 diff; ok
99: log = 1.9951124 ( 1.9956352 actual); 0.0005 diff; ok
99: cbrt = 4.6253061 ( 4.6260650 actual); 0.0008 diff; ok
100: sqrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
100: log = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
100: cbrt = 4.6409388 ( 4.6415888 actual); 0.0007 diff; ok
101: sqrt = 10.0493288 ( 10.0498756 actual); 0.0005 diff; ok
101: log = 2.0048876 ( 2.0043214 actual); 0.0006 diff; ok
101: cbrt = 4.6575475 ( 4.6570095 actual); 0.0005 diff; ok
1000: sqrt = 31.6220242 ( 31.6227766 actual); 0.0008 diff; ok
1000: log = 3.0000000 ( 3.0000000 actual); 0.0000 diff; ok
1000: cbrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
10000: sqrt = 99.9991455 ( 100.0000000 actual); 0.0009 diff; ok
10000: log = 4.0009756 ( 4.0000000 actual); 0.0010 diff; ok
10000: cbrt = 21.5436456 ( 21.5443469 actual); 0.0007 diff; ok
20000: sqrt = 141.4220798 ( 141.4213562 actual); 0.0007 diff; ok
20000: log = 4.3019052 ( 4.3010300 actual); 0.0009 diff; ok
20000: cbrt = 27.1449150 ( 27.1441762 actual); 0.0007 diff; ok
40000: sqrt = 199.9991455 ( 200.0000000 actual); 0.0009 diff; ok
40000: log = 4.6028333 ( 4.6020600 actual); 0.0008 diff; ok
40000: cbrt = 34.2003296 ( 34.1995189 actual); 0.0008 diff; ok
1e+08: sqrt = 9999.9994545 (10000.0000000 actual); 0.0005 diff; ok
1e+08: log = 8.0009761 ( 8.0000000 actual); 0.0010 diff; ok
1e+08: cbrt = 464.1597912 ( 464.1588834 actual); 0.0009 diff; ok
None
答案 0 :(得分:6)
这实际上是您理解 math 而不是程序的问题。算法很好,但提供的初始条件不是。
您可以像这样定义inverse(f, delta)
:
def inverse(f, delta=1e-5):
...
def newton(y, iters=15):
guess = float(y)/2
...
return newton
所以你猜测1000 = 10 x 的结果是500.0,但肯定10 500 太大了。初始猜测应选择为 f 的有效值,而不是选择 f 的倒数。
我建议您使用1的猜测进行初始化,即用
替换该行guess = 1
它应该可以正常工作。
low, high = 0, float(y)
这适用于您的测试用例,但很容易构建反例,例如log 10 0.1(= -1),√0.36(= 0.6)等(你教授的find_bounds
方法确实解决了√0.36问题,但仍然无法处理日志< sub> 10 0.1问题。)
答案 1 :(得分:3)
我追踪了你的错误,但它基本上归结为10 ** 10000000导致python溢出的事实。使用数学库快速检查
math.pow(10,10000000)
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
math.pow(10,10000000)
OverflowError: math range error
我为你做了一点研究,发现了这个
您需要重新评估为什么需要计算如此大的数字(并相应地更改代码::建议)或者开始寻找更大数量的处理解决方案。
你可以编辑你的反函数来检查某些输入是否会导致它失败(try语句),如果函数不是单调递增的话,这也可以解决零除法的一些问题,并避免那些区域OR
你可以在“有趣”区域中镜像关于y = x的多个点,并通过这些点使用插值方案来创建“逆”函数(hermite,taylor系列等)。
答案 2 :(得分:2)
如果您使用的是Python 2.x,int
和long
是不同的类型,而OverflowError
只会导致ints
(qv,{{3 }})。请尝试明确使用longs
(通过在积分值上使用long()
内置函数,或将L
附加到数字文字中。)
编辑:显然,正如Paul Seeb和KennyTM在他们的优秀答案中所指出的那样,这对算法缺陷没有任何补救措施。