我需要制作一个图表,其功能类似于图中高密度区域的密度图,但低于某个阈值则使用单个点。我找不到任何类似于我在matplotlib缩略图库或谷歌搜索中所需的代码。我有一个我自己编写的工作代码,但它有些棘手,而且(更重要的是)当点数/分档数量很大时需要花费不可思议的长时间。这是代码:
import numpy as np
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import pylab
import numpy.random
#Create the colormap:
halfpurples = {'blue': [(0.0,1.0,1.0),(0.000001, 0.78431373834609985, 0.78431373834609985),
(0.25, 0.729411780834198, 0.729411780834198), (0.5,
0.63921570777893066, 0.63921570777893066), (0.75,
0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181,
0.49019607901573181)],
'green': [(0.0,1.0,1.0),(0.000001,
0.60392159223556519, 0.60392159223556519), (0.25,
0.49019607901573181, 0.49019607901573181), (0.5,
0.31764706969261169, 0.31764706969261169), (0.75,
0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)],
'red': [(0.0,1.0,1.0),(0.000001,
0.61960786581039429, 0.61960786581039429), (0.25,
0.50196081399917603, 0.50196081399917603), (0.5,
0.41568627953529358, 0.41568627953529358), (0.75,
0.32941177487373352, 0.32941177487373352), (1.0,
0.24705882370471954, 0.24705882370471954)]}
halfpurplecmap = mpl.colors.LinearSegmentedColormap('halfpurples',halfpurples,256)
#Create x,y arrays of normally distributed points
npts = 1000
x = numpy.random.standard_normal(npts)
y = numpy.random.standard_normal(npts)
#Set bin numbers in both axes
nxbins = 25
nybins = 25
#Set the cutoff for resolving the individual points
minperbin = 1
#Make the density histrogram
H, yedges, xedges = np.histogram2d(y,x,bins=(nybins,nxbins))
#Reorient the axes
H = H[::-1]
extent = [xedges[0],xedges[-1],yedges[0],yedges[-1]]
#Compute all bins where the density plot value is below (or equal to) the threshold
lowxleftedges = [[xedges[i] for j in range(len(H[:,i])) if H[j,i] <= minperbin] for i in range(len(H[0,:]))]
lowxrightedges = [[xedges[i+1] for j in range(len(H[:,i])) if H[j,i] <= minperbin] for i in range(len(H[0,:]))]
lowyleftedges = [[yedges[-(j+2)] for j in range(len(H[:,i])) if H[j,i] <= minperbin] for i in range(len(H[0,:]))]
lowyrightedges = [[yedges[-(j+1)] for j in range(len(H[:,i])) if H[j,i] <= minperbin] for i in range(len(H[0,:]))]
#Flatten and convert to numpy array
lowxleftedges = np.asarray([item for sublist in lowxleftedges for item in sublist])
lowxrightedges = np.asarray([item for sublist in lowxrightedges for item in sublist])
lowyleftedges = np.asarray([item for sublist in lowyleftedges for item in sublist])
lowyrightedges = np.asarray([item for sublist in lowyrightedges for item in sublist])
#Find all points that lie in these regions
lowdatax = [[x[i] for j in range(len(lowxleftedges)) if lowxleftedges[j] <= x[i] and x[i] <= lowxrightedges[j] and lowyleftedges[j] <= y[i] and y[i] <= lowyrightedges[j]] for i in range(len(x))]
lowdatay = [[y[i] for j in range(len(lowyleftedges)) if lowxleftedges[j] <= x[i] and x[i] <= lowxrightedges[j] and lowyleftedges[j] <= y[i] and y[i] <= lowyrightedges[j]] for i in range(len(y))]
#Flatten and convert into numpy array
lowdatax = np.asarray([item for sublist in lowdatax for item in sublist])
lowdatay = np.asarray([item for sublist in lowdatay for item in sublist])
#Plot
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.plot(lowdatax,lowdatay,linestyle='.',marker='o',mfc='k',mec='k')
cp1 = ax1.imshow(H,interpolation='nearest',extent=extent,cmap=halfpurplecmap,vmin=minperbin)
fig1.colorbar(cp1)
fig1.savefig('contourtest.eps')
此代码生成如下所示的图像:
但是,当在较大的数据集上使用时,程序需要几秒到几分钟。有关如何提高速度的任何想法?谢谢!
答案 0 :(得分:14)
这应该这样做:
import matplotlib.pyplot as plt, numpy as np, numpy.random, scipy
#histogram definition
xyrange = [[-5,5],[-5,5]] # data range
bins = [100,100] # number of bins
thresh = 3 #density threshold
#data definition
N = 1e5;
xdat, ydat = np.random.normal(size=N), np.random.normal(1, 0.6, size=N)
# histogram the data
hh, locx, locy = scipy.histogram2d(xdat, ydat, range=xyrange, bins=bins)
posx = np.digitize(xdat, locx)
posy = np.digitize(ydat, locy)
#select points within the histogram
ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
xdat1 = xdat[ind][hhsub < thresh] # low density points
ydat1 = ydat[ind][hhsub < thresh]
hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
plt.imshow(np.flipud(hh.T),cmap='jet',extent=np.array(xyrange).flatten(), interpolation='none', origin='upper')
plt.colorbar()
plt.plot(xdat1, ydat1, '.',color='darkblue')
plt.show()
答案 1 :(得分:4)
对于记录,这是使用scipy.stats.gaussian_kde
而不是2D直方图的新尝试的结果。
根据目的,可以设想颜色网格和轮廓的不同组合。
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde
# parameters
npts = 5000 # number of sample points
bins = 100 # number of bins in density maps
threshold = 0.01 # density threshold for scatter plot
# initialize figure
fig, ax = plt.subplots()
# create a random dataset
x1, y1 = np.random.multivariate_normal([0, 0], [[1, 0], [0, 1]], npts/2).T
x2, y2 = np.random.multivariate_normal([4, 4], [[4, 0], [0, 1]], npts/2).T
x = np.hstack((x1, x2))
y = np.hstack((y1, y2))
points = np.vstack([x, y])
# perform kernel density estimate
kde = gaussian_kde(points)
z = kde(points)
# mask points above density threshold
x = np.ma.masked_where(z > threshold, x)
y = np.ma.masked_where(z > threshold, y)
# plot unmasked points
ax.scatter(x, y, c='black', marker='.')
# get bounds from axes
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()
# prepare grid for density map
xedges = np.linspace(xmin, xmax, bins)
yedges = np.linspace(ymin, ymax, bins)
xx, yy = np.meshgrid(xedges, yedges)
gridpoints = np.array([xx.ravel(), yy.ravel()])
# compute density map
zz = np.reshape(kde(gridpoints), xx.shape)
# plot density map
im = ax.imshow(zz, cmap='CMRmap_r', interpolation='nearest',
origin='lower', extent=[xmin, xmax, ymin, ymax])
# plot threshold contour
cs = ax.contour(xx, yy, zz, levels=[threshold], colors='black')
# show
fig.colorbar(im)
plt.show()
答案 2 :(得分:2)
你的问题是二次的 - 对于npts = 1000,你有一个数组大小达到10 ^ 6点,而不是你用列表推导迭代这些列表。
现在,这当然是一个品味问题,但我发现列表理解可以产生一个难以理解的完全代码,并且它们有时仅稍微快一些......但这不是我的观点。
我的观点是,对于大型数组操作,你有像numpy函数:
np.where, np.choose etc.
看到您可以使用NumPy实现列表推导的功能,并且您的代码应该运行得更快。
我的理解是正确的吗?
#Find all points that lie in these regions
你在测试多边形内的一个点吗?如果是这样,请考虑matplotlib中的point in polygon。
答案 3 :(得分:2)
经过一夜的睡眠并阅读Oz123的建议,我明白了。诀窍是计算每个x,y点落入(xi,yi)的哪个bin,然后测试H [xi,yi](实际上,在我的情况下H [yi,xi])是否低于阈值。代码如下,对于大量的点运行速度非常快,而且更清晰:
import numpy as np
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import pylab
import numpy.random
#Create the colormap:
halfpurples = {'blue': [(0.0,1.0,1.0),(0.000001, 0.78431373834609985, 0.78431373834609985),
0.25, 0.729411780834198, 0.729411780834198), (0.5,
0.63921570777893066, 0.63921570777893066), (0.75,
0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181,
0.49019607901573181)],
'green': [(0.0,1.0,1.0),(0.000001,
0.60392159223556519, 0.60392159223556519), (0.25,
0.49019607901573181, 0.49019607901573181), (0.5,
0.31764706969261169, 0.31764706969261169), (0.75,
0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)],
'red': [(0.0,1.0,1.0),(0.000001,
0.61960786581039429, 0.61960786581039429), (0.25,
0.50196081399917603, 0.50196081399917603), (0.5,
0.41568627953529358, 0.41568627953529358), (0.75,
0.32941177487373352, 0.32941177487373352), (1.0,
0.24705882370471954, 0.24705882370471954)]}
halfpurplecmap = mpl.colors.LinearSegmentedColormap('halfpurples',halfpurples,256)
#Create x,y arrays of normally distributed points
npts = 100000
x = numpy.random.standard_normal(npts)
y = numpy.random.standard_normal(npts)
#Set bin numbers in both axes
nxbins = 100
nybins = 100
#Set the cutoff for resolving the individual points
minperbin = 1
#Make the density histrogram
H, yedges, xedges = np.histogram2d(y,x,bins=(nybins,nxbins))
#Reorient the axes
H = H[::-1]
extent = [xedges[0],xedges[-1],yedges[0],yedges[-1]]
#Figure out which bin each x,y point is in
xbinsize = xedges[1]-xedges[0]
ybinsize = yedges[1]-yedges[0]
xi = ((x-xedges[0])/xbinsize).astype(np.integer)
yi = nybins-1-((y-yedges[0])/ybinsize).astype(np.integer)
#Subtract one from any points exactly on the right and upper edges of the region
xim1 = xi-1
yim1 = yi-1
xi = np.where(xi < nxbins,xi,xim1)
yi = np.where(yi < nybins,yi,yim1)
#Get all points with density below the threshold
lowdensityx = x[H[yi,xi] <= minperbin]
lowdensityy = y[H[yi,xi] <= minperbin]
#Plot
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.plot(lowdensityx,lowdensityy,linestyle='.',marker='o',mfc='k',mec='k',ms=3)
cp1 = ax1.imshow(H,interpolation='nearest',extent=extent,cmap=halfpurplecmap,vmin=minperbin)
fig1.colorbar(cp1)
fig1.savefig('contourtest.eps')