继续How to optimise filtering and counting for every row in a large R data frame
我有一个data.table
,如下所示:
name day wages hour colour
1 Ann 1 100 6 Green
2 Ann 1 150 18 Blue
3 Ann 2 200 10 Blue
4 Ann 3 150 10 Green
5 Bob 1 100 11 Red
6 Bob 1 200 17 Red
7 Bob 1 150 20 Green
8 Bob 2 100 11 Red
我希望知道,对于每个唯一的名称/日对,四个时间段之一,一些事实。我关心的时间段是:
t1 (hour < 9)
t2 (hour < 17)
t3 (hour > 9)
t4 (hour > 17)
事实的一些例子可能是:
wages > 175
colour = "Green"
我可以使用以下data.table
过滤器
setkey(dt,name,day)
result <- dt[,list(wages.t1=sum(wages>175&hour<9),
wages.t2=sum(wages>175&hour<17),
wages.t3=sum(wages>175&hour>9),
wages.t4=sum(wages>175&hour>17),
green.t1=sum(colour=="Green"&hour<9),
green.t2=sum(colour=="Green"&hour<17),
green.t3=sum(colour=="Green"&hour>9),
green.t4=sum(colour=="Green"&hour>17)),
列表(名称,日)]
给我
name day wages.t1 wages.t2 wages.t3 wages.t4 green.t1 green.t2 green.t3 green.t4
[1,] Ann 1 0 0 0 0 1 1 0 0
[2,] Ann 2 0 1 1 0 0 0 0 0
[3,] Ann 3 0 0 0 0 0 1 1 0
[4,] Bob 1 0 0 1 0 0 0 1 1
[5,] Bob 2 0 0 0 0 0 0 0 0
但是这个a)读起来很可怕写和b)似乎效率低下。
有关如何做得更好的任何提示?请注意,在我的实际场景中,每个时间段我有数十万行,四个时间段和30-35个事实。
- 要创建的代码dt
dt = data.table(
name = factor(c("Ann", "Ann", "Ann", "Ann",
"Bob", "Bob", "Bob", "Bob")),
day = c(1, 1, 2, 3, 1, 1, 1, 2),
wages = c(100, 150, 200, 150, 100, 200, 150, 100),
hour = c(6, 18, 10, 10, 11, 17, 20, 11),
colour = c("Green", "Blue", "Blue", "Green", "Red",
"Red", "Green", "Red")
)
答案 0 :(得分:3)
如下:
f = list(quote(wages>175),quote(colour=="Green"))
t = list(quote(hour<9),quote(hour<17),quote(hour>9),quote(hour>17))
dt = as.data.table(df)
dt[,as.list(mapply("%*%",
lapply(t,eval,.SD),
rep(lapply(f,eval,.SD),each=length(t))
)), by=list(name,day)]
name day V1 V2 V3 V4 V5 V6 V7 V8
[1,] Ann 1 0 0 0 0 1 1 0 0
[2,] Ann 2 0 1 1 0 0 0 0 0
[3,] Ann 3 0 0 0 0 0 1 1 0
[4,] Bob 1 0 0 1 0 0 0 1 1
[5,] Bob 2 0 0 0 0 0 0 0 0
显然,没有处理列名,但如果这种方法没问题,可以添加。
这应该更有效率,因为每个t
和每个f
仅针对每个组进行一次评估,然后将这些结果的组合合并。