我不知所措。我一直试图让这个工作好几天了。但我没有得到这个,所以我想我会在这里咨询你们,看看有人能帮助我!
我正在使用pyparsing尝试将一种查询格式解析为另一种查询格式。这不是一个简单的转变,但实际上需要一些大脑:)
当前查询如下:
("breast neoplasms"[MeSH Terms] OR breast cancer[Acknowledgments]
OR breast cancer[Figure/Table Caption] OR breast cancer[Section Title]
OR breast cancer[Body - All Words] OR breast cancer[Title]
OR breast cancer[Abstract] OR breast cancer[Journal])
AND (prevention[Acknowledgments] OR prevention[Figure/Table Caption]
OR prevention[Section Title] OR prevention[Body - All Words]
OR prevention[Title] OR prevention[Abstract])
使用pyparsing我已经能够获得以下结构:
[[[['"', 'breast', 'neoplasms', '"'], ['MeSH', 'Terms']], 'or',
[['breast', 'cancer'], ['Acknowledgments']], 'or', [['breast', 'cancer'],
['Figure/Table', 'Caption']], 'or', [['breast', 'cancer'], ['Section',
'Title']], 'or', [['breast', 'cancer'], ['Body', '-', 'All', 'Words']],
'or', [['breast', 'cancer'], ['Title']], 'or', [['breast', 'cancer'],
['Abstract']], 'or', [['breast', 'cancer'], ['Journal']]], 'and',
[[['prevention'], ['Acknowledgments']], 'or', [['prevention'],
['Figure/Table', 'Caption']], 'or', [['prevention'], ['Section', 'Title']],
'or', [['prevention'], ['Body', '-', 'All', 'Words']], 'or',
[['prevention'], ['Title']], 'or', [['prevention'], ['Abstract']]]]
但现在,我不知所措。我需要将上面的输出格式化为lucene搜索查询。 以下是所需转换的简短示例:
"breast neoplasms"[MeSH Terms] --> [['"', 'breast', 'neoplasms', '"'],
['MeSH', 'Terms']] --> mesh terms: "breast neoplasms"
但我被困在那里。我还需要能够使用特殊词AND和OR。
所以最终的查询可能是:网格术语:“乳腺肿瘤”和预防
谁能帮助我并给我一些如何解决这个问题的提示?任何形式的帮助将不胜感激。
由于我正在使用pyparsing,我对python很重要。我已粘贴下面的代码,以便您可以使用它而不必从0开始!
非常感谢你的帮助!
def PubMedQueryParser():
word = Word(alphanums +".-/&§")
complex_structure = Group(Literal('"') + OneOrMore(word) + Literal('"')) + Suppress('[') + Group(OneOrMore(word)) + Suppress(']')
medium_structure = Group(OneOrMore(word)) + Suppress('[') + Group(OneOrMore(word)) + Suppress(']')
easy_structure = Group(OneOrMore(word))
parse_structure = complex_structure | medium_structure | easy_structure
operators = oneOf("and or", caseless=True)
expr = Forward()
atom = Group(parse_structure) + ZeroOrMore(operators + expr)
atom2 = Group(Suppress('(') + atom + Suppress(')')) + ZeroOrMore(operators + expr) | atom
expr << atom2
return expr
答案 0 :(得分:5)
嗯,你已经开始了一个不错的开始。但是从这里开始,很容易陷入解析器调整的细节,你可能会在这种模式下呆上几天。让我们从原始查询语法开始逐步解决您的问题。
当您开始使用这样的项目时,请编写要解析的语法的BNF。它不一定非常严格,事实上,根据我从样本中看到的内容,这是一个开始:
word :: Word('a'-'z', 'A'-'Z', '0'-'9', '.-/&§')
field_qualifier :: '[' word+ ']'
search_term :: (word+ | quoted_string) field_qualifier?
and_op :: 'and'
or_op :: 'or'
and_term :: or_term (and_op or_term)*
or_term :: atom (or_op atom)*
atom :: search_term | ('(' and_term ')')
这非常接近 - 我们在word
与and_op
和or_op
表达式之间存在一些可能含糊不清的问题,因为'和'和'或'确实符合定义一个字。我们需要在实施时加强这一点,以确保“癌症或癌症或淋巴瘤或黑色素瘤”被读作4个不同的搜索词,用'或'分隔,而不仅仅是一个大词(我认为这是你当前的解析器会这样做)。我们也可以获得识别操作符优先级的好处 - 可能不是绝对必要的,但现在让我们继续使用它。
转换为pyparsing非常简单:
LBRACK,RBRACK,LPAREN,RPAREN = map(Suppress,"[]()")
and_op = CaselessKeyword('and')
or_op = CaselessKeyword('or')
word = Word(alphanums + '.-/&')
field_qualifier = LBRACK + OneOrMore(word) + RBRACK
search_term = ((Group(OneOrMore(word)) | quoted_string)('search_text') +
Optional(field_qualifier)('field'))
expr = Forward()
atom = search_term | (LPAREN + expr + RPAREN)
or_term = atom + ZeroOrMore(or_op + atom)
and_term = or_term + ZeroOrMore(and_op + or_term)
expr << and_term
为了解决'或'和'和'的含糊不清,我们在单词的开头加上了一个负面的预测:
word = ~(and_op | or_op) + Word(alphanums + '.-/&')
要为结果提供一些结构,请包含Group
类:
field_qualifier = Group(LBRACK + OneOrMore(word) + RBRACK)
search_term = Group(Group(OneOrMore(word) | quotedString)('search_text') +
Optional(field_qualifier)('field'))
expr = Forward()
atom = search_term | (LPAREN + expr + RPAREN)
or_term = Group(atom + ZeroOrMore(or_op + atom))
and_term = Group(or_term + ZeroOrMore(and_op + or_term))
expr << and_term
现在使用以下方法解析示例文本:
res = expr.parseString(test)
from pprint import pprint
pprint(res.asList())
给出:
[[[[[[['"breast neoplasms"'], ['MeSH', 'Terms']],
'or',
[['breast', 'cancer'], ['Acknowledgments']],
'or',
[['breast', 'cancer'], ['Figure/Table', 'Caption']],
'or',
[['breast', 'cancer'], ['Section', 'Title']],
'or',
[['breast', 'cancer'], ['Body', '-', 'All', 'Words']],
'or',
[['breast', 'cancer'], ['Title']],
'or',
[['breast', 'cancer'], ['Abstract']],
'or',
[['breast', 'cancer'], ['Journal']]]]],
'and',
[[[[['prevention'], ['Acknowledgments']],
'or',
[['prevention'], ['Figure/Table', 'Caption']],
'or',
[['prevention'], ['Section', 'Title']],
'or',
[['prevention'], ['Body', '-', 'All', 'Words']],
'or',
[['prevention'], ['Title']],
'or',
[['prevention'], ['Abstract']]]]]]]
实际上,与解析器的结果非常相似。我们现在可以通过这个结构进行递归并构建你的新查询字符串,但我更喜欢使用解析对象,通过将类定义为标记容器而不是Group
来在解析时创建,然后向获得我们想要的输出的类。区别在于我们的解析对象令牌容器可以具有特定于已解析的表达式类型的行为。
我们将从一个基本抽象类ParsedObject
开始,它将解析的标记作为其初始化结构。我们还将添加一个抽象方法queryString
,我们将在所有派生类中实现它以创建所需的输出:
class ParsedObject(object):
def __init__(self, tokens):
self.tokens = tokens
def queryString(self):
'''Abstract method to be overridden in subclasses'''
现在我们可以从这个类派生,任何子类都可以用作定义语法的解析动作。
当我们这样做时,Group
为结构类型添加了我们的方式,所以我们将重新定义没有它们的原始解析器:
search_term = Group(OneOrMore(word) | quotedString)('search_text') +
Optional(field_qualifier)('field')
atom = search_term | (LPAREN + expr + RPAREN)
or_term = atom + ZeroOrMore(or_op + atom)
and_term = or_term + ZeroOrMore(and_op + or_term)
expr << and_term
现在我们实现search_term
的类,使用self.tokens
来访问输入字符串中找到的已解析位:
class SearchTerm(ParsedObject):
def queryString(self):
text = ' '.join(self.tokens.search_text)
if self.tokens.field:
return '%s: %s' % (' '.join(f.lower()
for f in self.tokens.field[0]),text)
else:
return text
search_term.setParseAction(SearchTerm)
接下来,我们将实施and_term
和or_term
表达式。两者都是二元运算符,它们只在输出查询中生成的运算符字符串不同,所以我们可以定义一个类,让它们为各自的运算符字符串提供类常量:
class BinaryOperation(ParsedObject):
def queryString(self):
joinstr = ' %s ' % self.op
return joinstr.join(t.queryString() for t in self.tokens[0::2])
class OrOperation(BinaryOperation):
op = "OR"
class AndOperation(BinaryOperation):
op = "AND"
or_term.setParseAction(OrOperation)
and_term.setParseAction(AndOperation)
请注意,pyparsing与传统解析器略有不同 - 我们的BinaryOperation
将“a或b或c”匹配为单个表达式,而不是嵌套对“(a或b)或c”。因此,我们必须使用步进切片[0::2]
重新加入所有术语。
最后,我们通过将所有exprs包装在()中来添加一个解析操作以反映任何嵌套:
class Expr(ParsedObject):
def queryString(self):
return '(%s)' % self.tokens[0].queryString()
expr.setParseAction(Expr)
为方便起见,这里是一个copy / pastable块中的整个解析器:
from pyparsing import *
LBRACK,RBRACK,LPAREN,RPAREN = map(Suppress,"[]()")
and_op = CaselessKeyword('and')
or_op = CaselessKeyword('or')
word = ~(and_op | or_op) + Word(alphanums + '.-/&')
field_qualifier = Group(LBRACK + OneOrMore(word) + RBRACK)
search_term = (Group(OneOrMore(word) | quotedString)('search_text') +
Optional(field_qualifier)('field'))
expr = Forward()
atom = search_term | (LPAREN + expr + RPAREN)
or_term = atom + ZeroOrMore(or_op + atom)
and_term = or_term + ZeroOrMore(and_op + or_term)
expr << and_term
# define classes for parsed structure
class ParsedObject(object):
def __init__(self, tokens):
self.tokens = tokens
def queryString(self):
'''Abstract method to be overridden in subclasses'''
class SearchTerm(ParsedObject):
def queryString(self):
text = ' '.join(self.tokens.search_text)
if self.tokens.field:
return '%s: %s' % (' '.join(f.lower()
for f in self.tokens.field[0]),text)
else:
return text
search_term.setParseAction(SearchTerm)
class BinaryOperation(ParsedObject):
def queryString(self):
joinstr = ' %s ' % self.op
return joinstr.join(t.queryString()
for t in self.tokens[0::2])
class OrOperation(BinaryOperation):
op = "OR"
class AndOperation(BinaryOperation):
op = "AND"
or_term.setParseAction(OrOperation)
and_term.setParseAction(AndOperation)
class Expr(ParsedObject):
def queryString(self):
return '(%s)' % self.tokens[0].queryString()
expr.setParseAction(Expr)
test = """("breast neoplasms"[MeSH Terms] OR breast cancer[Acknowledgments]
OR breast cancer[Figure/Table Caption] OR breast cancer[Section Title]
OR breast cancer[Body - All Words] OR breast cancer[Title]
OR breast cancer[Abstract] OR breast cancer[Journal])
AND (prevention[Acknowledgments] OR prevention[Figure/Table Caption]
OR prevention[Section Title] OR prevention[Body - All Words]
OR prevention[Title] OR prevention[Abstract])"""
res = expr.parseString(test)[0]
print res.queryString()
打印以下内容:
((mesh terms: "breast neoplasms" OR acknowledgments: breast cancer OR
figure/table caption: breast cancer OR section title: breast cancer OR
body - all words: breast cancer OR title: breast cancer OR
abstract: breast cancer OR journal: breast cancer) AND
(acknowledgments: prevention OR figure/table caption: prevention OR
section title: prevention OR body - all words: prevention OR
title: prevention OR abstract: prevention))
我猜你需要收紧一些输出 - 那些lucene标签名称看起来很模糊 - 我只是关注你发布的样本。但是你不必更改解析器,只需调整附加类的queryString
方法。
作为海报的补充练习:在查询语言中添加对非布尔运算符的支持。