我正在练习ACM ICPC过去的问题http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1030
我无法解决这个问题,完全不知道如何在3秒的时间限制内以有效的方式完成。 我认为这个问题是基于数论,但不知道该怎么做。 谢谢!
答案 0 :(得分:1)
尽管转化为向量问题,但三维向量和如此多的变量有些棘手,因此我们首先可以降低维数并将原始方程式更改为:
A[1]* (s[1][2]-s[1][1], s[1][3]-s[1][1]) + a[2]* (s[2][2]- s[2][1], s[2][3]- s[2][1]) +.....+a[n]* (s[n][2]- s[n][1],..+a[n]*) = (())
。
二维向量被视为从平面坐标系中的原点开始的向量。如果只有两个向量,因为a[i]
是一个非负数,那么当只有两个向量时,角度必须为PI
。如果两个相邻向量之间的角度不大于PI
,则N个向量可以满足上述方程式。代码不长,但是需要数学思维T_T
这是正确的代码。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=1000+5;
const double PI=acos(-1);
int main()
{
int n;
double A[maxn];
while(scanf("%d",&n),n)
{
int s1,s2,s3;
for(int i=0;i<n;i++)
{
scanf("%d%d%d",&s1,&s2,&s3);
A[i]=atan2(s2-s1,s3-s1);
}
sort(A,A+n);
double tmp=0;
for(int i=1;i<n;i++)
tmp=max(tmp,A[i]-A[i-1]);
tmp=max(tmp,A[0]-A[n-1]+2*PI);
if(tmp<=PI)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
答案 1 :(得分:0)
所以我相信:
(a1,b1,c1), (a2,b2,c2) ... (an,bn,cn)
如果存在非负系数,您需要决定:
X = (x1,x2,...,xn)
这样
x1*a1 + x2*a2 + ... + xn*an ==
x1*b1 + x2*b2 + ... + xn*bn ==
x1*c1 + x2*c2 + ... + xn*cn
只需要一点线性代数。
提示:尝试构造一个n == 4的输入,这样所有4个xis都需要为正才能解决问题(而且只用3就无法解决)。这可能吗?