有没有人有一个Delphi / Pascal示例来调用下面的OpenSSL函数......
我特别感兴趣:
procedure EVP_CIPHER_CTX_init(a: PEVP_CIPHER_CTX);
function EVP_CIPHER_CTX_cleanup(a: PEVP_CIPHER_CTX): cint;
function EVP_CIPHER_CTX_set_key_length(x: PEVP_CIPHER_CTX; keylen: cint): cint;
function EVP_CIPHER_CTX_ctrl(ctx: PEVP_CIPHER_CTX; type_, arg: cint; ptr: Pointer): cint;
//
function EVP_EncryptInit(ctx: PEVP_CIPHER_CTX; const chipher_: PEVP_CIPHER;const key, iv: PByte): cint;
function EVP_EncryptUpdate(ctx: PEVP_CIPHER_CTX; out_: pcuchar;outlen: pcint; const in_: pcuchar; inlen: cint): cint;
function EVP_EncryptFinal(ctx: PEVP_CIPHER_CTX; out_data: PByte; outlen: pcint): cint;
function EVP_DecryptInit(ctx: PEVP_CIPHER_CTX; chiphir_type: PEVP_CIPHER;const key, iv: PByte): cint;
function EVP_DecryptUpdate(ctx: PEVP_CIPHER_CTX; out_data: PByte;outl: pcint; const in_: PByte; inl: cint): cint;
function EVP_DecryptFinal(ctx: PEVP_CIPHER_CTX; outm: PByte; outlen: pcint): cint;
谢谢!
P.S。我见过http://www.disi.unige.it/person/FerranteM/delphiopenssl/
不幸的是,该库不包含这些功能。
答案 0 :(得分:9)
以下是我曾经处理过的一些代码中的几个例程。它们使用您提到的大多数加密方法。正如评论中提到的,您确实需要与OpenSSL文档保持密切联系。我通过阅读它们并浏览openssl.exe程序的C源代码来创建下面的内容。 (从openssl.org下载)。
它并不完美并做了一些假设,但它确实显示了在Delphi中使用例程的基础知识。
正如我之前在SO(!)上多次提到的那样,最初的灵感来自你已经链接到上面的http://www.disi.unige.it/person/FerranteM/delphiopenssl/的东西。
编辑:在我创建这些方法时,在底部添加了一个导入单元,以补充Indy标题中的内容。我最近没有看过所以其中一些可能已经在Indy中出现了。
function EVP_Encrypt_AES256(Value: TBytes; APassword: TBytes): TBytes;
var
cipher: PEVP_CIPHER;
ctx: EVP_CIPHER_CTX;
salt, key, iv, buf: TBytes;
block_size: integer;
buf_start, out_len: integer;
begin
cipher := EVP_aes_256_cbc;
salt := EVP_GetSalt;
EVP_GetKeyIV(APassword, cipher, salt, key, iv);
EVP_CIPHER_CTX_init(@ctx);
try
EVP_EncryptInit(@ctx, cipher, @key[0], @iv[0]);
block_size := EVP_CIPHER_CTX_block_size(@ctx);
SetLength(buf, Length(Value) + block_size + SALT_MAGIC_LEN + PKCS5_SALT_LEN);
buf_start := 0;
Move(PAnsiChar(SALT_MAGIC)^, buf[buf_start], SALT_MAGIC_LEN);
Inc(buf_start, SALT_MAGIC_LEN);
Move(salt[0], buf[buf_start], PKCS5_SALT_LEN);
Inc(buf_start, PKCS5_SALT_LEN);
EVP_EncryptUpdate(@ctx, @buf[buf_start], @out_len, @Value[0], Length(Value));
Inc(buf_start, out_len);
EVP_EncryptFinal(@ctx, @buf[buf_start], @out_len);
Inc(buf_start, out_len);
SetLength(buf, buf_start);
result := buf;
finally
EVP_CIPHER_CTX_cleanup(@ctx);
end;
end;
function EVP_GetSalt: TBytes;
begin
SetLength(result, PKCS5_SALT_LEN);
RAND_pseudo_bytes(@result[0], PKCS5_SALT_LEN);
end;
procedure EVP_GetKeyIV(APassword: TBytes; ACipher: PEVP_CIPHER; const ASalt: TBytes; out Key, IV: TBytes);
var
ctx: EVP_MD_CTX;
hash: PEVP_MD;
mdbuff: TBytes;
mds: cardinal;
nkey, niv: integer;
begin
hash := EVP_sha256;
mds := 0;
SetLength(mdbuff, EVP_MAX_MD_SIZE);
nkey := ACipher.key_len;
niv := ACipher.iv_len;
SetLength(Key, nkey);
SetLength(IV, nkey); // Max size to start then reduce it at the end
Assert(hash.md_size >= nkey);
Assert(hash.md_size >= niv);
// This is pretty much the same way that EVP_BytesToKey works. But that
// allows multiple passes through the hashing loop and also allows to
// choose different hashing methods. We have no need for this. The
// OpenSSL docs say it is out of date and internet sources suggest using
// something like PKCS5_v2_PBE_keyivgen and/or PKCS5_PBKDF2_HMAC_SHA1
// but this method is easy to port to the DEC and DCP routines and easy to
// use in other environments. Ultimately the Key and IV rely on the password
// and the salt and can be easily reformed.
// This method relies on the fact that the hashing method produces a key of
// the correct size. EVP_BytesToKey goes through muptiple hashing passes if
// necessary to make the key big enough when using smaller hashes.
EVP_MD_CTX_init(@ctx);
try
// Key first
EVP_DigestInit_ex(@ctx, hash, nil);
EVP_DigestUpdate(@ctx, @APassword[0], Length(APassword));
if (ASalt <> nil) then
EVP_DigestUpdate(@ctx, @ASalt[0], Length(ASalt));
EVP_DigestFinal_ex(@ctx, @Key[0], mds);
// Derive IV next
EVP_DigestInit_ex(@ctx, hash, nil);
EVP_DigestUpdate(@ctx, @Key[0], mds);
EVP_DigestUpdate(@ctx, @APassword[0], Length(APassword));
if (ASalt <> nil) then
EVP_DigestUpdate(@ctx, @ASalt[0], Length(ASalt));
EVP_DigestFinal_ex(@ctx, @IV[0], mds);
SetLength(IV, niv);
finally
EVP_MD_CTX_cleanup(@ctx);
end;
end;
解密:
function EVP_Decrypt_AES256(const Value: TBytes; APassword: TBytes): TBytes;
var
cipher: PEVP_CIPHER;
ctx: EVP_CIPHER_CTX;
salt, key, iv, buf: TBytes;
src_start, buf_start, out_len: integer;
begin
cipher := EVP_aes_256_cbc;
SetLength(salt, SALT_SIZE);
// First read the magic text and the salt - if any
if (AnsiString(TEncoding.ASCII.GetString(Value, 0, SALT_MAGIC_LEN)) = SALT_MAGIC) then
begin
Move(Value[SALT_MAGIC_LEN], salt[0], SALT_SIZE);
EVP_GetKeyIV(APassword, cipher, salt, key, iv);
src_start := SALT_MAGIC_LEN + SALT_SIZE;
end
else
begin
EVP_GetKeyIV(APassword, cipher, nil, key, iv);
src_start := 0;
end;
EVP_CIPHER_CTX_init(@ctx);
try
EVP_DecryptInit(@ctx, cipher, @key[0], @iv[0]);
SetLength(buf, Length(Value));
buf_start := 0;
EVP_DecryptUpdate(@ctx, @buf[buf_start], @out_len, @Value[src_start], Length(Value) - src_start);
Inc(buf_start, out_len);
EVP_DecryptFinal(@ctx, @buf[buf_start], @out_len);
Inc(buf_start, out_len);
SetLength(buf, buf_start);
result := buf;
finally
EVP_CIPHER_CTX_cleanup(@ctx);
end;
end;
我的额外导入单位:
unit libeay32;
{
Import unit for the OpenSSL libeay32.dll library.
Originally based on the work by Marco Ferrante.
http://www.csita.unige.it/
http://www.disi.unige.it/
then on the Indy libraries
and, of course, the C source code from http://www.openssl.org
Only the parts that we need to use have been translated/imported. There are
a whole load of functions in the library that aren't included here
2010-03-11 Why re-invent the wheel. Indy has done a large chunk of this
already so use it - IdSSLOpenSSLHeaders
Now we generally just include stuff that isn't available in the Indy code.
Primarily encryption stuff rather than SSL stuff.
}
interface
uses
SysUtils, Windows,
IdSSLOpenSSLHeaders;
const
LIBEAY_DLL_NAME = 'libeay32.dll';
PROC_ADD_ALL_ALGORITHMS_NOCONF = 'OPENSSL_add_all_algorithms_noconf';
PROC_ADD_ALL_ALGORITHMS = 'OpenSSL_add_all_algorithms';
EVP_PKEY_RSA = IdSSLOpenSSLHeaders.EVP_PKEY_RSA;
PKCS5_SALT_LEN = IdSSLOpenSSLHeaders.PKCS5_SALT_LEN;
EVP_MAX_KEY_LENGTH = IdSSLOpenSSLHeaders.EVP_MAX_KEY_LENGTH;
EVP_MAX_IV_LENGTH = IdSSLOpenSSLHeaders.EVP_MAX_IV_LENGTH;
EVP_MAX_MD_SIZE = IdSSLOpenSSLHeaders.EVP_MAX_MD_SIZE;
type
PEVP_PKEY = IdSSLOpenSSLHeaders.PEVP_PKEY;
PRSA = IdSSLOpenSSLHeaders.PRSA;
EVP_MD_CTX = IdSSLOpenSSLHeaders.EVP_MD_CTX;
EVP_CIPHER_CTX = IdSSLOpenSSLHeaders.EVP_CIPHER_CTX;
PEVP_CIPHER = IdSSLOpenSSLHeaders.PEVP_CIPHER;
PEVP_MD = IdSSLOpenSSLHeaders.PEVP_MD;
type
TSSLProgressCallbackFunction = procedure (status: integer; value: integer; cb_arg: pointer);
TSSLPasswordCallbackFunction = function (buffer: TBytes; size: integer; rwflag: integer; u: pointer): integer; cdecl;
TOpenSSL_InitFunction = procedure; cdecl;
type
PEK_ARRAY = ^EK_ARRAY;
EK_ARRAY = array of PByteArray;
PUBK_ARRAY = array of PEVP_PKEY;
PPUBK_ARRAY = ^PUBK_ARRAY;
function EVP_aes_256_cbc: PEVP_CIPHER; cdecl;
function EVP_md5: PEVP_MD; cdecl;
function EVP_sha1: PEVP_MD; cdecl;
function EVP_sha256: PEVP_MD; cdecl;
function EVP_PKEY_assign(pkey: PEVP_PKEY; key_type: integer; key: Pointer): integer; cdecl;
function EVP_PKEY_new: PEVP_PKEY; cdecl;
procedure EVP_PKEY_free(key: PEVP_PKEY); cdecl;
function EVP_PKEY_assign_RSA(pkey: PEVP_PKEY; key: PRSA): integer;
function EVP_PKEY_size(pkey: PEVP_PKEY): integer; cdecl;
procedure EVP_CIPHER_CTX_init(a: PEVP_CIPHER_CTX); cdecl;
function EVP_CIPHER_CTX_cleanup(a: PEVP_CIPHER_CTX): integer; cdecl;
function EVP_CIPHER_CTX_block_size(ctx: PEVP_CIPHER_CTX): integer; cdecl;
procedure EVP_MD_CTX_init(ctx: PEVP_MD_CTX); cdecl;
function EVP_MD_CTX_cleanup(ctx: PEVP_MD_CTX): integer; cdecl;
function EVP_BytesToKey(cipher_type: PEVP_CIPHER; md: PEVP_MD; salt: PByte; data: PByte; datal: integer; count: integer; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptInit_ex(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; impl: PENGINE; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; key: PByte; iv: PByte): integer; cdecl;
function EVP_EncryptUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer; cdecl;
function EVP_EncryptFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_DecryptInit_ex(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; impl: PENGINE; key: PByte; iv: PByte): integer; cdecl;
function EVP_DecryptInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; key: PByte; iv: PByte): integer; cdecl;
function EVP_DecryptUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer; cdecl;
function EVP_DecryptFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_SealInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; ek: PEK_ARRAY; ekl: PIntegerArray; iv: PByte; pubk: PPUBK_ARRAY; npubk: integer): integer; cdecl;
function EVP_SealUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
function EVP_SealFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
function EVP_OpenInit(ctx: PEVP_CIPHER_CTX; cipher_type: PEVP_CIPHER; ek: PByte; ekl: integer; iv: PByte; priv: PEVP_PKEY): integer; cdecl;
function EVP_OpenUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
function EVP_OpenFinal(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer): integer; cdecl;
procedure EVP_DigestInit(ctx: PEVP_MD_CTX; md: PEVP_MD); cdecl;
function EVP_DigestInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer; cdecl;
function EVP_DigestUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer; cdecl;
function EVP_DigestFinal(ctx: PEVP_MD_CTX; md: PByte; var s: cardinal): integer; cdecl;
function EVP_DigestFinal_ex(ctx: PEVP_MD_CTX; md: PByte; var s: cardinal): integer; cdecl;
procedure EVP_SignInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
function EVP_SignInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
function EVP_SignUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
function EVP_SignFinal(ctx: PEVP_MD_CTX; sig: PByte; var s: integer; pkey: PEVP_PKEY): integer; cdecl;
procedure EVP_VerifyInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
function EVP_VerifyInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
function EVP_VerifyUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
function EVP_VerifyFinal(ctx: PEVP_MD_CTX; sig: PByte; s: integer; pkey: PEVP_PKEY): integer; cdecl;
function X509_get_pubkey(cert: PX509): PEVP_PKEY; cdecl;
procedure BIO_free_all(a: PBIO); cdecl;
function PEM_write_bio_RSA_PUBKEY(bp: PBIO; x: PRSA): integer; cdecl;
function PEM_read_bio_PUBKEY(bp: PBIO; x: PPEVP_PKEY; cb: TSSLPasswordCallbackFunction; u: pointer): PEVP_PKEY; cdecl;
function PEM_write_bio_PUBKEY(bp: PBIO; x: PEVP_PKEY): integer; cdecl;
function RAND_load_file(const filename: PAnsiChar; max_bytes: longint): integer; cdecl;
function RAND_bytes(buf: PByte; num: integer): integer; cdecl;
function RAND_pseudo_bytes(buf: PByte; num: integer): integer; cdecl;
function RSA_generate_key(num: integer; e: Cardinal; cb: TSSLProgressCallbackFunction; cb_arg: pointer): PRSA; cdecl;
procedure RSA_free(r: PRSA); cdecl;
implementation
resourcestring
sLibeay32NotLoaded = 'libeay32.dll not loaded';
sAddAllAlgorithmsProcNotFound = 'OpenSSL_add_all_algorithms procedure not defined in libeay32.dll';
function EVP_aes_256_cbc: PEVP_CIPHER; cdecl external LIBEAY_DLL_NAME;
function EVP_md5; cdecl external LIBEAY_DLL_NAME;
function EVP_sha1; cdecl external LIBEAY_DLL_NAME;
function EVP_sha256; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_assign; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_new; cdecl external LIBEAY_DLL_NAME;
procedure EVP_PKEY_free; cdecl external LIBEAY_DLL_NAME;
function EVP_PKEY_assign_RSA(pkey: PEVP_PKEY; key: PRSA): integer;
begin
// Implemented as a macro in evp.h
result := EVP_PKEY_assign(pkey, EVP_PKEY_RSA, PAnsiChar(key));
end;
function EVP_PKEY_size; cdecl external LIBEAY_DLL_NAME;
procedure EVP_CIPHER_CTX_init; cdecl external LIBEAY_DLL_NAME;
function EVP_CIPHER_CTX_cleanup; cdecl external LIBEAY_DLL_NAME;
function EVP_CIPHER_CTX_block_size; cdecl external LIBEAY_DLL_NAME;
function EVP_BytesToKey; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptInit_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptInit; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptUpdate; cdecl external LIBEAY_DLL_NAME;
function EVP_EncryptFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptInit_ex; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptInit; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptUpdate; cdecl external LIBEAY_DLL_NAME;
function EVP_DecryptFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_SealInit; cdecl external LIBEAY_DLL_NAME;
function EVP_SealUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
begin
// EVP_SealUpdate is #defined to EVP_EncryptUpdate in evp.h
result := EVP_EncryptUpdate(ctx, data_out, outl, data_in, inl);
end;
function EVP_SealFinal; cdecl external LIBEAY_DLL_NAME;
function EVP_OpenInit; cdecl external LIBEAY_DLL_NAME;
function EVP_OpenUpdate(ctx: PEVP_CIPHER_CTX; data_out: PByte; var outl: integer; data_in: PByte; inl: integer): integer;
begin
// EVP_OpenUpdate is #defined to EVP_DecryptUpdate in evp.h
result := EVP_DecryptUpdate(ctx, data_out, outl, data_in, inl);
end;
function EVP_OpenFinal; cdecl external LIBEAY_DLL_NAME;
procedure EVP_MD_CTX_init; cdecl external LIBEAY_DLL_NAME;
function EVP_MD_CTX_cleanup; cdecl external LIBEAY_DLL_NAME;
procedure EVP_DigestInit; external LIBEAY_DLL_NAME;
function EVP_DigestInit_ex; external LIBEAY_DLL_NAME;
function EVP_DigestUpdate; external LIBEAY_DLL_NAME;
function EVP_DigestFinal; external LIBEAY_DLL_NAME;
function EVP_DigestFinal_ex; external LIBEAY_DLL_NAME;
procedure EVP_SignInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
begin
// Defined as a macro in evp.h
EVP_DigestInit(ctx, md);
end;
function EVP_SignInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
begin
// Defined as a macro in evp.h
result := EVP_DigestInit_ex(ctx, md, impl);
end;
function EVP_SignUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
begin
// Defined as a macro in evp.h
result := EVP_DigestUpdate(ctx, data, cnt);
end;
function EVP_SignFinal; cdecl external LIBEAY_DLL_NAME;
procedure EVP_VerifyInit(ctx: PEVP_MD_CTX; md: PEVP_MD);
begin
// Defined as a macro in evp.h
EVP_DigestInit(ctx, md);
end;
function EVP_VerifyInit_ex(ctx: PEVP_MD_CTX; md: PEVP_MD; impl: PENGINE): integer;
begin
// Defined as a macro in evp.h
result := EVP_DigestInit_ex(ctx, md, impl);
end;
function EVP_VerifyUpdate(ctx: PEVP_MD_CTX; data: PByte; cnt: integer): integer;
begin
// Defined as a macro in evp.h
result := EVP_DigestUpdate(ctx, data, cnt);
end;
function EVP_VerifyFinal; cdecl external LIBEAY_DLL_NAME;
function X509_get_pubkey; cdecl; external LIBEAY_DLL_NAME;
procedure BIO_free_all; cdecl external LIBEAY_DLL_NAME;
function PEM_write_bio_RSA_PUBKEY; cdecl external LIBEAY_DLL_NAME;
function PEM_read_bio_PUBKEY; cdecl external LIBEAY_DLL_NAME;
function PEM_write_bio_PUBKEY; cdecl external LIBEAY_DLL_NAME;
function RAND_load_file; cdecl external LIBEAY_DLL_NAME;
function RAND_bytes; cdecl external LIBEAY_DLL_NAME;
function RAND_pseudo_bytes; cdecl external LIBEAY_DLL_NAME;
function RSA_generate_key; cdecl external LIBEAY_DLL_NAME;
procedure RSA_free; cdecl external LIBEAY_DLL_NAME;
end.
答案 1 :(得分:0)
对我来说,提到的open ssl有效,但它与OpenSSL不兼容。当您想要在java / javascript中解密时,需要兼容的功能。要使其工作,您需要使用下面的代码替换EVP_GetKeyIV例程。
procedure EVP_GetKeyIV(APassword: TBytes; ACipher: PEVP_CIPHER; const ASalt: TBytes; out Key, IV: TBytes);
begin
SetLength(Key,EVP_MAX_KEY_LENGTH);
SetLength(iv,EVP_MAX_IV_LENGTH);
EVP_BytesToKey(ACipher,EVP_md5, @ASalt[0] ,@APassword[0] , Length(APassword),1, @Key[0], @IV[0]);
end;
要加密值并对其进行基本编码,我使用以下例程:
function EVP_Encrypt_Base64_AES256(Value: RawByteString; APassword: AnsiString): String;
var bytes : TBytes;
begin
bytes:= EVP_Encrypt_AES256(BytesOf(Value),BytesOf(APassword));
Result:=EncodeBase64(pointer(Bytes), length(Bytes));
end;
sEncrypted:=EVP_Encrypt_Base64_AES256('Test','Password123');
要测试它,您可以将sEncrypted字符串保存到in.txt文件中。 (不要忘记在最后放置一个输入)要使用open ssl解密,请使用:
打开sll命令
openssl enc -d -aes-256-cbc -k Password123 -a -in in.txt -out out.txt
在out.txt中,您将看到原始值Test