我的数据框如下所示:
ID | value 1 | value 2 | value 3 | value 4
1 | M | D | F | A
2 | F | M | G | B
3 | M | D | F | A
4 | L | D | E | B
我想得到这样的东西。
value 1 | value 2 | value 3 | value 4| Number of combinations
M | D | F | A | 2
F | M | G | B | 1
L | D | E | B | 1
e.g。计算列值1 - 值4的唯一组合的数量。
答案 0 :(得分:12)
count
将执行该任务。
plyr
答案 1 :(得分:8)
current_user
N <- 10000
d <- data.frame(
ID=seq(1, N),
v1=sample(c("M","F", "M", "L"), N, replace = TRUE),
v2=sample(c("D","M","D","D"), N, replace = TRUE),
v3=sample(c("F","G","F","E"), N, replace = TRUE),
v4=sample(c("A","B","A","B"), N, replace = TRUE)
)
dt <- data.table::as.data.table(d)
dt[, .N, by = c('v1','v2','v3','v4')]
dplyr::count_(d, vars = c('v1','v2','v3','v4'))
plyr::count(d, vars = c('v1','v2','v3','v4'))
plyr::ddply(d, .variables = c('v1','v2','v3','v4'), nrow)
aggregate(ID ~ ., d, FUN = length)
最好只使用microbenchmark::microbenchmark(dt[, .N, by = c('v1','v2','v3','v4')],
plyr::count(d, vars = c('v1','v2','v3','v4')),
plyr::ddply(d, .variables = c('v1','v2','v3','v4'), nrow),
dplyr::count_(d, vars = c('v1','v2','v3','v4')),
aggregate(ID ~ ., d, FUN = length),
times = 1000)
Unit: microseconds
expr min lq mean median uq max neval cld
dt[, .N, by = c("v1", "v2", "v3", "v4")] 887.807 1107.543 1263.777 1174.258 1289.724 4263.156 1000 a
plyr::count(d, vars = c("v1", "v2", "v3", "v4")) 3912.791 4270.387 5379.080 4498.053 5791.743 157146.103 1000 c
plyr::ddply(d, .variables = c("v1", "v2", "v3", "v4"), nrow) 7737.874 8553.370 10630.849 9018.266 11126.517 187301.696 1000 d
dplyr::count_(d, vars = c("v1", "v2", "v3", "v4")) 2126.913 2432.957 2763.499 2568.251 2789.386 12549.669 1000 b
aggregate(ID ~ ., d, FUN = length) 7395.440 8121.828 10546.659 8776.371 10858.263 210139.759 1000 d
代替data.table
,因为它最快,不需要其他函数或库来计算。另请注意,data.frame
函数对大型数据集的执行速度要慢得多。
最后注意事项:随时可以使用新方法进行更新。
答案 2 :(得分:6)
没有plyr。
aggregate(ID ~ ., d, FUN=length)# . means all variables in d except ID
答案 3 :(得分:0)
这是使用plyr
包
library(plyr)
d <- data.frame(
ID=seq(1,4), v1=c("M","F", "M", "L"),
v2=c("D","M","D","D"), v3=c("F","G","F","E"), v4=c("A","B","A","B")
)
ddply(d,.(v1,v2,v3,v4), nrow)
我希望这不是作业......