我正在开发基于一组预定义响应的基于检索的聊天机器人。我正在使用 tflearn RNN 模型来做到这一点。在编写以下代码后,我意识到我几乎不了解模型训练的作用以及 model.predict 的工作原理。有人可以根据以下代码解释这两个术语的含义以及它们是如何工作的吗,谢谢!!!
net = tflearn.input_data(shape=[None,len(training[0])])
net = tflearn.fully_connected(net,8)
net = tflearn.fully_connected(net,8)
net = tflearn.fully_connected(net,len(output[0]),activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.fit(training,output,n_epoch=4000,batch_size=16,show_metric=True)
model.save("model.tflearn")
#After this i do model.predict on the preprocessed user input in a different function. Essentially i just want to know how model.predict works.