我是python和机器学习的新手。我想绘制一个文本文件的Zipf分布图。但是我的代码给出了错误。 以下是我的python代码
import re
from itertools import islice
#Get our corpus of medical words
frequency = {}
list(frequency)
open_file = open("abp.csv", 'r')
file_to_string = open_file.read()
words = re.findall(r'(\b[A-Za-z][a-z]{2,9}\b)', file_to_string)
#build dict of words based on frequency
for word in words:
count = frequency.get(word,0)
frequency[word] = count + 1
#limit words to 1000
n = 1000
frequency = {key:value for key,value in islice(frequency.items(), 0, n)}
#convert value of frequency to numpy array
s = frequency.values()
s = np.array(s)
#Calculate zipf and plot the data
a = 2. # distribution parameter
count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
x = np.arange(1., 50.)
y = x**(-a) / special.zetac(a)
plt.plot(x, y/max(y), linewidth=2, color='r')
plt.show()
上面的代码给出以下错误: 计数,垃圾箱,忽略= plt.hist(s [s <50],50,normed = True)
TypeError:“ dict_values”和“ int”的实例之间不支持“ <”
答案 0 :(得分:0)
numpy数组s
实际上包含一个dict_values
对象。要将值转换为包含dict_values
的数字的numpy数组,请使用
import numpy as np
frequency = {key:value for key,value in islice(frequency.items(), 0, n)}
s = np.fromiter(frequency.values(), dtype=float)
假设您希望数组由float
组成。
有关更多信息,请阅读docs。