我目前正在尝试在caret
中创建一些不同的模型,从逻辑模型到XGBoost。创建模型很容易,但是当我想使用模型对开始之前已经搁置的测试集进行预测时,会收到一条错误消息,提示诸如:
UseMethod(“ predict”)中的错误:
没有适用于“预测”的方法应用于“ data.frame”类的对象
和:
预测错误(logistic_model $ finalModel,new_data = pd_test)$。pred_class:
$运算符对原子向量无效
这是物流模型:
set.seed(100)
train_test_split <- initial_split(pd_data, prop = 0.8)
pd_train <- training(train_test_split)
pd_test <- testing(train_test_split)
# caret
# logistic model
# model creation and VIF
log_control <- trainControl(method = "cv", number = 5, classProbs = TRUE,
summaryFunction = twoClassSummary)
logistic_model <- train(default ~ profit_margin + interest_coverage_ratio +
age_of_company + liquidity_ratio_2
+ unpaid_debt_collection
+ adverse_audit_opinion + amount_unpaid_debt
+ payment_reminders, data = pd_train,
trControl = log_control,
method = "glm", family = "binomial", metric = "ROC")
vif(logistic_model$finalModel)
log_class_predictions <- predict(logistic_model$finalModel, new_data = pd_test)$.pred_class
log_predictions <- predict(logistic_model$finalModel$tuneValue,
new_data = pd_test, type = "prob")$.pred_1
如何解决此问题,以便可以在未修改的测试集中测试我的模型?我尝试了几种logistic_model$
选择,但无济于事
答案 0 :(得分:0)
您可以使用以下代码
log_class_predictions <- predict(logistic_model, new_data = pd_test)
log_predictions <- predict(logistic_model, new_data = pd_test, type = "prob")