我想给英语句子添加标签并进行一些处理。我想使用openNLP。我安装了它
当我执行命令
时I:\Workshop\Programming\nlp\opennlp-tools-1.5.0-bin\opennlp-tools-1.5.0>java -jar opennlp-tools-1.5.0.jar POSTagger models\en-pos-maxent.bin < Text.txt
它在Text.txt中输出POSTagging输入
Loading POS Tagger model ... done (4.009s)
My_PRP$ name_NN is_VBZ Shabab_NNP i_FW am_VBP 22_CD years_NNS old._.
Average: 66.7 sent/s
Total: 1 sent
Runtime: 0.015s
我希望它安装正确吗?
现在我如何从java应用程序内部执行此操作?我已经将openNLPtools,jwnl,maxent jar添加到项目中但是如何调用POStagging?
答案 0 :(得分:38)
这里有一些(旧的)示例代码,我将它们放在一起,现代化代码可以遵循:
package opennlp;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.cmdline.postag.POSModelLoader;
import opennlp.tools.postag.POSModel;
import opennlp.tools.postag.POSSample;
import opennlp.tools.postag.POSTaggerME;
import opennlp.tools.tokenize.WhitespaceTokenizer;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import java.io.File;
import java.io.IOException;
import java.io.StringReader;
public class OpenNlpTest {
public static void main(String[] args) throws IOException {
POSModel model = new POSModelLoader().load(new File("en-pos-maxent.bin"));
PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent");
POSTaggerME tagger = new POSTaggerME(model);
String input = "Can anyone help me dig through OpenNLP's horrible documentation?";
ObjectStream<String> lineStream =
new PlainTextByLineStream(new StringReader(input));
perfMon.start();
String line;
while ((line = lineStream.read()) != null) {
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
String[] tags = tagger.tag(whitespaceTokenizerLine);
POSSample sample = new POSSample(whitespaceTokenizerLine, tags);
System.out.println(sample.toString());
perfMon.incrementCounter();
}
perfMon.stopAndPrintFinalResult();
}
}
输出结果为:
Loading POS Tagger model ... done (2.045s)
Can_MD anyone_NN help_VB me_PRP dig_VB through_IN OpenNLP's_NNP horrible_JJ documentation?_NN
Average: 76.9 sent/s
Total: 1 sent
Runtime: 0.013s
这基本上是作为OpenNLP的一部分包含的POSTaggerTool类工作的。 sample.getTags()
是String
数组,其自身具有标记类型。
这需要直接访问培训数据,这实际上非常蹩脚。
更新的代码库有点不同(可能更有用。)
首先,Maven POM:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.javachannel</groupId>
<artifactId>opennlp-example</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.opennlp</groupId>
<artifactId>opennlp-tools</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>[6.8.21,)</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
</project>
这是代码,作为测试编写,因此位于./src/test/java/org/javachannel/opennlp/example
:
package org.javachannel.opennlp.example;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.postag.POSModel;
import opennlp.tools.postag.POSSample;
import opennlp.tools.postag.POSTaggerME;
import opennlp.tools.tokenize.WhitespaceTokenizer;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.net.URL;
import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.util.stream.Stream;
public class POSTest {
private void download(String url, File destination) throws IOException {
URL website = new URL(url);
ReadableByteChannel rbc = Channels.newChannel(website.openStream());
FileOutputStream fos = new FileOutputStream(destination);
fos.getChannel().transferFrom(rbc, 0, Long.MAX_VALUE);
}
@DataProvider
Object[][] getCorpusData() {
return new Object[][][]{{{
"Can anyone help me dig through OpenNLP's horrible documentation?"
}}};
}
@Test(dataProvider = "getCorpusData")
public void showPOS(Object[] input) throws IOException {
File modelFile = new File("en-pos-maxent.bin");
if (!modelFile.exists()) {
System.out.println("Downloading model.");
download("http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin", modelFile);
}
POSModel model = new POSModel(modelFile);
PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent");
POSTaggerME tagger = new POSTaggerME(model);
perfMon.start();
Stream.of(input).map(line -> {
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line.toString());
String[] tags = tagger.tag(whitespaceTokenizerLine);
POSSample sample = new POSSample(whitespaceTokenizerLine, tags);
perfMon.incrementCounter();
return sample.toString();
}).forEach(System.out::println);
perfMon.stopAndPrintFinalResult();
}
}
这段代码实际上并没有测试任何东西 - 它是一个冒烟测试,如果有的话 - 但它应该作为一个起点。另一个(可能)好处是,如果你没有下载它,它会为你下载一个模型。
答案 1 :(得分:10)
网址http://bulba.sdsu.edu/jeanette/thesis/PennTags.html不再有效。我在http://www.slideshare.net/gagan1667/opennlp-demo
的第14张幻灯片中找到了以下内容
答案 2 :(得分:1)
上述答案提供了一种使用OpenNLP现有模型的方法,但如果您需要训练自己的模型,可能以下内容可以提供帮助:
以下是完整代码的详细教程:
https://dataturks.com/blog/opennlp-pos-tagger-training-java-example.php
您可以自动或手动构建数据集,具体取决于您的域。手动构建这样的数据集可能会非常痛苦,像POS tagger这样的工具可以帮助简化流程。
培训数据格式
训练数据作为文本文件传递,其中每一行是一个数据项。该行中的每个单词都应以&#34; word_LABEL&#34;等格式标记,单词和标签名称用下划线分隔&#39; _&#39;。
anki_Brand overdrive_Brand
just_ModelName dance_ModelName 2018_ModelName
aoc_Brand 27"_ScreenSize monitor_Category
horizon_ModelName zero_ModelName dawn_ModelName
cm_Unknown 700_Unknown modem_Category
computer_Category
训练模型
这里重要的类是POSModel,它包含实际模型。我们使用类POSTaggerME来进行模型构建。以下是从训练数据文件
构建模型的代码public POSModel train(String filepath) {
POSModel model = null;
TrainingParameters parameters = TrainingParameters.defaultParams();
parameters.put(TrainingParameters.ITERATIONS_PARAM, "100");
try {
try (InputStream dataIn = new FileInputStream(filepath)) {
ObjectStream<String> lineStream = new PlainTextByLineStream(new InputStreamFactory() {
@Override
public InputStream createInputStream() throws IOException {
return dataIn;
}
}, StandardCharsets.UTF_8);
ObjectStream<POSSample> sampleStream = new WordTagSampleStream(lineStream);
model = POSTaggerME.train("en", sampleStream, parameters, new POSTaggerFactory());
return model;
}
}
catch (Exception e) {
e.printStackTrace();
}
return null;
}
使用模型进行标记。
最后,我们可以看到该模型如何用于标记看不见的查询:
public void doTagging(POSModel model, String input) {
input = input.trim();
POSTaggerME tagger = new POSTaggerME(model);
Sequence[] sequences = tagger.topKSequences(input.split(" "));
for (Sequence s : sequences) {
List<String> tags = s.getOutcomes();
System.out.println(Arrays.asList(input.split(" ")) +" =>" + tags);
}
}