我有一个包含多个变量的大型数据集。我需要进行双向方差分析,然后使用Tukey HSD进行事后成对的多重比较。
我的前25个条目的数据头是这样的:
> head(my_data2, 25 )
CellType variable value
1 Cell1 W1 18.780294
2 Cell1 W1 13.932397
3 Cell1 W1 20.877093
4 Cell1 W1 9.291295
5 Cell1 W1 10.939570
6 Cell1 W1 12.236713
7 Cell1 W1 13.810722
8 Cell1 W1 23.944473
9 Cell1 W1 17.355429
10 Cell1 W1 18.248215
11 Cell2 W1 17.988200
12 Cell2 W1 15.427909
13 Cell2 W1 21.839687
14 Cell2 W1 22.322325
15 Cell2 W1 12.535762
16 Cell2 W1 12.743278
17 Cell2 W1 15.007214
18 Cell2 W1 12.054787
19 Cell2 W1 15.639977
20 Cell2 W1 16.006960
21 Cell3 W1 17.452199
22 Cell3 W1 23.280391
23 Cell3 W1 7.902728
24 Cell3 W1 8.353992
25 Cell3 W1 24.360250
我进行方差分析
#ANOVA
my_data2$CellType <- as.factor(my_data2$CellType)
my_ANOVA = aov(value ~ CellType + variable + CellType:variable, data = my_data2)
summary(my_ANOVA)
然后临时
my_posthoc =TukeyHSD(my_ANOVA, which = "CellType:variable")
my_posthoc
到目前为止,一切都还可以,但是我posthoc的输出包括所有成对比较,这给了我们超过2200行很大的投入。 例如我的输出是这样的:
> my_posthoc
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = value ~ CellType + variable + CellType:variable, data = my_data2)
$`CellType:variable`
diff lwr upr p adj
Cell2:W1-Cell1:W1 0.21499 -29.46177884 29.8917588 1.0000000
Cell3:W1-Cell1:W1 0.88234 -28.79442884 30.5591088 1.0000000
Cell4:W1-Cell1:W1 1.24301 -28.43375884 30.9197788 1.0000000
Cell5:W1-Cell1:W1 1.61684 -28.05992884 31.2936088 1.0000000
Cell6:W1-Cell1:W1 0.65009 -29.02667884 30.3268588 1.0000000
Cell7:W1-Cell1:W1 1.08223 -28.59453884 30.7589988 1.0000000
Cell1:W2-Cell1:W1 9.00094 -20.67582884 38.6777088 1.0000000
Cell2:W2-Cell1:W1 27.62765 -2.04911884 57.3044188 0.1249342
Cell3:W2-Cell1:W1 29.40077 -0.27599884 59.0775388 0.0570151
Cell4:W2-Cell1:W1 28.84731 -0.82945884 58.5240788 0.0736530
Cell5:W2-Cell1:W1 42.51407 12.83730116 72.1908388 0.0000144
Cell6:W2-Cell1:W1 30.78610 1.10933116 60.4628688 0.0288235
Cell7:W2-Cell1:W1 27.62966 -2.04710884 57.3064288 0.1248307
Cell1:W3-Cell1:W1 20.95847 -8.71829884 50.6352388 0.7816085
Cell2:W3-Cell1:W1 42.50116 12.82439116 72.1779288 0.0000146
Cell3:W3-Cell1:W1 47.07037 17.39360116 76.7471388 0.0000004
Cell4:W3-Cell1:W1 47.26760 17.59083116 76.9443688 0.0000003
Cell5:W3-Cell1:W1 64.08026 34.40349116 93.7570288 0.0000000
Cell6:W3-Cell1:W1 53.90284 24.22607116 83.5796088 0.0000000
最后说:
[ reached getOption("max.print") -- omitted 2290 rows ]
但是,我只对每个变量内的比较感兴趣,而对它们之间的比较不感兴趣。以上述输出为例,我只需要
Cell1:W1-Cell2:W1
。全部都在同一个变量w1
中。或例如Cell6:W3-Cell1:W3
。我对Cell6:W3-Cell6:W1
如何指定? 谢谢
答案 0 :(得分:1)
我采取了简单的诚实方法,将术语(行名)分为四个部分并进行了过滤。
library(dplyr); library(tibble); library(purrr) # OR library(tidyverse) # EDITED
my_posthoc2 <- my_posthoc %>%
pluck("CellType:variablen") %>% # get element of list
as_tibble(rownames = "Term") %>% # convert to tibble
separate(Term, # separate terms by - and :
into = c("LL", "LR", "RL", "RR"),
sep = "-|:",
remove = FALSE)
my_posthoc2 %>%
filter(LR == "W1", RR == "W1") # get Cell1:W1-Cell2:W1
答案 1 :(得分:0)
由于您指定了“我只对每个变量内的比较感兴趣,而对它们之间的比较不感兴趣”,因此您无需包括交互项CellType:variable
您可以将模型重写为:
my_ANOVA = aov(value ~ CellType + variable, data = my_data2)